Skip to main content

Introduction to Ultra Low Power Transceiver Design

  • Chapter
Ultra-Low-Power Short-Range Radios

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Design of radios with ultra-low-power consumption can enable many new and exciting applications ranging from wearable healthcare to Internet of Things devices and beyond. Achieving low power operation is usually an exercise in trading-off important performance metrics with power. This chapter presents an overview of state-of-the-art narrowband architectures and techniques that achieve ultra-low-power operation, and concludes with a section that benchmarks recent state-of-the-art designs in order to illustrate power-performance trade-offs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, T. Tuan, PicoRadios for wireless sensor networks: the next challenge in ultra-low power design, in IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2002, pp. 2001–2002

    Google Scholar 

  2. D.-G. Lee, L.G. Salem, P.P. Mercier, Ultra-low-power transmitter design. Microwave Magazine, April 2015

    Google Scholar 

  3. S. Sayilir, W.-F. Loke, J. Lee, H. Diamond, B. Epstein, D.L. Rhodes, B. Jung, A −90 dBm sensitivity wireless transceiver using VCO-PA-LNA-switch-modulator co-design for low power insect-based wireless sensor networks. IEEE J. Solid-State Circuits 49(4), 996–1006 (2014)

    Article  Google Scholar 

  4. P.S. Hall, Y.I. Nechayev, A. Alomainy, C.C. Constantinou, C. Parini, M.R. Kamarudin, T.Z. Salim, D.T.M. Hee, R. Dubrovka, A.S. Owadally, A. Serra, P. Nepa, M. Gallo, M. Bozzetti, Antennas and propagation for on-body communication systems. IEEE Antenn. Propag. Mag. 49(3), 41–58 (2007)

    Article  Google Scholar 

  5. D. Smith, D. Miniutti, L. Hanlen, A. Zhang, D. Lewis, D. Rodda, B. Gilbert, Power delay profiles for dynamic narrowband body area network channels. IEEE 802.15.6 standard, 2009

    Google Scholar 

  6. A. Fort, F. Keshmiri, G.R. Crusats, C. Craeye, C. Oestges, A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements. IEEE Trans. Antenn. Propag. 58(2), 503–514 (2010)

    Article  MathSciNet  Google Scholar 

  7. IEEE Standard for Local and metropolitan area networks – Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6, 2012

    Google Scholar 

  8. G. Devita, A.C.W. Wong, N. Kasparidis, P. Corbishley, A. Burdett, P. Paddan, A 0.9 mW PLL integrated in an ultra-low-power SoC for WPAN and WBAN applications, in 2010 Proceedings of ESSCIRC, 2010, pp. 158–161

    Google Scholar 

  9. W. Deng, D. Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, A. Matsuzawa, 15.1 A 0.0066 mm2 780 μW fully synthesizable PLL with a current-output DAC and an interpolative phase-coupled oscillator using edge-injection technique, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 266–267

    Google Scholar 

  10. J. Gil, J.-H. Kim, C.S. Kim, C. Park, J. Park, H. Park, H. Lee, S.-J. Lee, Y.-H. Jang, M. Koo, J.-M. Gil, K. Han, Y.W. Kwon, I. Song, A fully integrated low-power high-coexistence 2.4-GHz ZigBee transceiver for biomedical and healthcare applications. IEEE Trans. Microw. Theory Tech. 62(9), 1879–1889 (2014)

    Article  Google Scholar 

  11. A. Molnar, B. Lu, S. Lanzisera, B. W. Cook, K.S.J. Pister, An ultra-low power 900 MHz RF transceiver for wireless sensor networks, in Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), 2004, pp. 401–404

    Google Scholar 

  12. V. Karam, P.H.R. Popplewell, A. Shamim, J. Rogers, C. Plett, A 6.3 GHz BFSK transmitter with on-chip antenna for self-powered medical sensor applications, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 101–104

    Google Scholar 

  13. M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, J. van de Molengraft, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, K. Philips, G. Dolmans, H. de Groot, A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circuits Syst. 5(6), 523–534 (2011)

    Article  Google Scholar 

  14. A. Yamagishi, M. Ugajin, T. Tsukahara, A 1-V 2.4-GHz PLL synthesizer with a fully differential prescaler and a low-off-leakage charge pump, in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 2, pp. 733–736

    Google Scholar 

  15. P.P. Mercier, S. Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A sub-nW 2.4 GHz transmitter for low data-rate sensing applications. IEEE J. Solid-State Circuits 49(7), 1463–1474 (2014)

    Article  Google Scholar 

  16. G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, D. Sylvester, A cubic-millimeter energy-autonomous wireless intraocular pressure monitor, in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 310–312

    Google Scholar 

  17. B.W. Cook, A. Berny, A. Molnar, S. Lanzisera, K.S.J. Pister, Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circuits 41(12), 2757–2766 (2006)

    Article  Google Scholar 

  18. X. Huang, P. Harpe, X. Wang, G. Dolmans, H. de Groot, A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping, in IEEE Radio Frequency Integrated Circuits Symposium, 2010, pp. 263–266

    Google Scholar 

  19. J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)

    Article  Google Scholar 

  20. E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in IEEE International Solid-State Circuits Conference – (ISSCC), 2010, pp. 236–237

    Google Scholar 

  21. P.P. Mercier, A.C. Lysaght, S. Bandyopadhyay, A.P. Chandrakasan, K.M. Stankovic, Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)

    Article  Google Scholar 

  22. X. Huang, A. Ba, P. Harpe, G. Dolmans, H. de Groot, J.R. Long, A 915 MHz, ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J. Solid-State Circuits 47(12), 3197–3207 (2012)

    Article  Google Scholar 

  23. J. Bae, L. Yan, H.-J. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid-State Circuits 46(4), 928–937 (2011)

    Article  Google Scholar 

  24. G. Papotto, F. Carrara, A. Finocchiaro, G. Palmisano, A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE J. Solid-State Circuits 49(2), 335–346 (2014)

    Article  Google Scholar 

  25. J. Pandey, B.P. Otis, A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circuits 46(5), 1049–1058 (2011)

    Article  Google Scholar 

  26. C. Ma, C. Hu, J. Cheng, L. Xia, P.Y. Chiang, A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service. IEEE Trans. Biomed. Circuits Syst. 7(6), 841–850 (2013)

    Article  Google Scholar 

  27. M.M. Izad, C.-H. Heng, A 17 pJ/bit 915 MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4

    Google Scholar 

  28. F. Zhang, M.A. Stoneback, B.P. Otis, A 23 μA RF-powered transmitter for biomedical applications, in 2011 IEEE Radio Frequency Integrated Circuits Symposium, 2011, pp. 1–4

    Google Scholar 

  29. Y. Chee, A. Niknejad, J. Rabaey, A 46% efficient 0.8 dBm transmitter for wireless sensor networks, in Symposium on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 43–44

    Google Scholar 

  30. D.C. Daly, A.P. Chandrakasan, An energy-efficient OOK transceiver for wireless sensor networks. IEEE J. Solid-State Circuits 42(5), 1003–1011 (2007)

    Article  Google Scholar 

  31. A. Paidimarri, P.M. Nadeau, P.P. Mercier, A.P. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circuits 48(4), 1042–1054 (2013)

    Article  Google Scholar 

  32. B. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX superregenerative transceiver for wireless sensor networks, in ISSCC. IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005, pp. 396–398

    Google Scholar 

  33. I. Nam, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, K. Lee, A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications. IEEE Trans. Microw. Theory Tech. 55(4), 682–689 (2007)

    Article  Google Scholar 

  34. P.M. Nadeau, A. Paidimarri, P.P. Mercier, A.P. Chandrakasan, Multi-channel 180 pJ/b 2.4 GHz FBAR-based receiver, in IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 381–384

    Google Scholar 

  35. A. Heragu, D. Ruffieux, C. Enz, A 2.4-GHz MEMS-based PLL-free multi-channel receiver with channel filtering at RF, in Proceedings of the ESSCIRC (ESSCIRC), 2012, pp. 137–140

    Google Scholar 

  36. K. Wang, J. Koo, R. Ruby, B. Otis, 21.7 A 1.8 mW PLL-free channelized 2.4 GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 372–373

    Google Scholar 

  37. N. Stanic, A. Balankutty, P.R. Kinget, Y. Tsividis, A 2.4-GHz ISM-band sliding-IF receiver with a 0.5-V supply. IEEE J. Solid-State Circuits 43(5), 1138–1145 (2008)

    Article  Google Scholar 

  38. Z. Lin, P.-I. Mak, R. Martins, 9.4 A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 164–165

    Google Scholar 

  39. N.M. Pletcher, S. Gambini, J. Rabaey, A 52 μW wake-up receiver with −72 dBm sensitivity using an uncertain-IF architecture. IEEE J. Solid-State Circuits 44(1), 269–280 (2009)

    Article  Google Scholar 

  40. F.X. Moncunill-Geniz, P. Pala-Schonwalder, O. Mas-Casals, A generic approach to the theory of superregenerative reception. IEEE Trans. Circuits Syst. Regul. Pap. 52(1), 54–70 (2005)

    Article  Google Scholar 

  41. J.-Y. Chen, M.P. Flynn, J.P. Hayes, A fully integrated auto-calibrated super-regenerative receiver in 0.13-μm CMOS. IEEE J. Solid-State Circuits 42(9), 1976–1985 (2007)

    Article  Google Scholar 

  42. Texas Instrument, CC2550. [Online]. Available: http://www.ti.com/product/cc2550?keyMatch=cc2550&tisearch=Search-EN

  43. Nordic Semiconductor, nRF24E2. [Online]. Available: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24E2/(language)/eng-GB

  44. P.D. Bradley, An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices, in IEEE Biomedical Circuits and Systems Conference, 2006, pp. 158–161

    Google Scholar 

  45. J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. IEEE Trans. Biomed. Circuits Syst. 8(4), 497–509 (2014)

    Article  Google Scholar 

  46. J. Masuch, M. Delgado-Restituto, A 1.1-mW −81.4-dBm sensitivity CMOS transceiver for Bluetooth low energy. IEEE Trans. Microw. Theory Tech. 61(4), 1660–1673 (2013)

    Article  Google Scholar 

  47. J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C.P. Yue, Z. Hong, P.Y. Chiang, A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4

    Google Scholar 

  48. F. Zhang, K. Wang, Y. Miyahara, B. Otis, A 1.6 mW 300 mV-supply 2.4 GHz receiver with −94 dBm sensitivity for energy-harvesting applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, pp. 456–457

    Google Scholar 

  49. T. Copani, S. Shashidharan, S. Chakraborty, M. Stevens, S. Kiaei, B. Bakkaloglu, A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications. IEEE Trans. Microw. Theory Tech. 59(5), 1369–1378 (2011)

    Article  Google Scholar 

  50. Y.-H. Liu, A. Ba, J.H. van den Heuvel, K. Philips, G. Dolmans, H. de Groot, 9.5 A 1.2 nJ/b 2.4 GHz receiver with a sliding-IF phase-to-digital converter for wireless personal/body-area networks, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 166–167

    Google Scholar 

  51. P. Choi, H.C. Park, S. Kim, S. Park, I. Nam, T.W. Kim, S. Park, S. Shin, M.S. Kim, K. Kang, Y. Ku, H. Choi, S.M. Park, K. Lee, An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz. IEEE J. Solid-State Circuits 38(12), 2258–2268 (2003)

    Article  Google Scholar 

  52. M. Flatscher, M. Dielacher, T. Herndl, T. Lentsch, R. Matischek, J. Prainsack, W. Pribyl, H. Theuss, W. Weber, A bulk acoustic wave (BAW) based transceiver for an in-tire-pressure monitoring sensor node. IEEE J. Solid-State Circuits 45(1), 167–177 (2010)

    Article  Google Scholar 

  53. M. Vidojkovic, X. Huang, X. Wang, C. Zhou, A. Ba, M. Lont, Y.-H. Liu, P. Harpe, M. Ding, B. Busze, N. Kiyani, K. Kanda, S. Masui, K. Philips, H. de Groot, 9.7 A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11 kb/s to 4.5 Mb/s for medical applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 170–171

    Google Scholar 

  54. W.-Z. Chen, T.-Y. Lu, W.-W. Ou, S.-T. Chou, S.-Y. Yang, A 2.4 GHz reference-less receiver for 1 Mbps QPSK demodulation. IEEE Trans. Circuits Syst. Regul. Pap. 59(3), 505–514 (2012)

    Article  MathSciNet  Google Scholar 

  55. J.H. Jang, D.F. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless sensor node for condition monitoring powered by a vibration energy harvester, in IEEE Custom Integrated Circuits Conference (CICC), 2011, pp. 1–4

    Google Scholar 

  56. F.X. Moncunill-Geniz, P. Pala-Schonwalder, C. Dehollain, N. Joehl, M. Declercq, An 11-Mb/s 2.1-mW synchronous superregenerative receiver at 2.4 GHz. IEEE Trans. Microw. Theory Tech. 55(6), 1355–1362 (2007)

    Article  Google Scholar 

  57. H.-G. Park, J. Lee, J.-A. Jang, J.-H. Jang, D.-S. Lee, H. Kim, S.J. Kim, S.-G. Lee, K.-Y. Lee, An ultra-low-power super regeneration oscillator-based transceiver with 177 μW leakage-compensated PLL and automatic quench waveform generator. IEEE Trans. Microw. Theory Tech. 61(9), 3381–3390 (2013)

    Article  Google Scholar 

  58. D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J. Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for insect motion control. IEEE J. Solid-State Circuits 45(1), 153–166 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick P. Mercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, D., Mercier, P.P. (2015). Introduction to Ultra Low Power Transceiver Design. In: Mercier, P., Chandrakasan, A. (eds) Ultra-Low-Power Short-Range Radios. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14714-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14714-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14713-0

  • Online ISBN: 978-3-319-14714-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics