Skip to main content

Odor Sensing Technologies for Visualization of Odor Quality and Space

  • Chapter
Book cover Smart Sensors and Systems
  • 2664 Accesses

Abstract

In recent years, sensors for objective evaluation of quality and quantity of odor substances have shown a wide range of potential applications in many fields. However, the odor quality is difficult to be expressed by quantitative data because the odor sensation is brought about by a variety of volatile compounds, which form a complicated, subjective olfactory sense. Recent progress in molecular biological research of the olfactory system have shown that an odor cluster map produced on the surface of olfactory bulb through olfactory receptors presents essential information for brain to perceive odorants. The clustering perception model provides us with a new concept to design odor sensors with performance equivalent to mammalian olfactory system. The biological-inspired odor sensing based on various molecular recognition technologies, such as partial structure recognized water membrane/Pt electrodes, benzene-patterned self-assembled monolayer (SAM) layers, size and polarity selected molecular sieve materials, and molecularly imprinted polymer (MIP) adsorbents, are introduced to construct an artificial odor map and to evaluate the odor quality. On the other hand, odorants in our living environment can only be perceived by the sense of our olfactory, and odor space is invisible to eyes. The temporal and spatial distribution of odorants in environment is also important information for human and other animals. However, the visualization of odor space by using conventional sensor technologies is a difficult task due to the limited spatiotemporal resolution. Here optical sensing technologies based on fluorescence imaging and localized surface plasmon resonance (LSPR) are developed to visualize the spatiotemporal distribution of odorants in environment. In addition, the application of the developed sensors in the visualization of human body odor and odor release from fragrance encapsulated cyclodextrin inclusion complexes are presented also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buck L, Axel R. A novel multigene family may encode odorant receptors – a molecular-basis for odor recognition. Cell. 1991;65:175–87.

    Article  Google Scholar 

  2. Axel R. Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew Chem Int Ed. 2005;44:6110–27.

    Article  Google Scholar 

  3. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev. 2006;86:409–33.

    Article  Google Scholar 

  4. Mori K, Shepherd GM. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Semin Cell Biol. 1994;5:65–74.

    Article  Google Scholar 

  5. Malnic B, Hirono J, Sato T, Buck LB. Combinatorial receptor codes for odors. Cell. 1999;96:713–23.

    Article  Google Scholar 

  6. Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant receptor. Nat Neurosci. 2000;3:1248–55.

    Article  Google Scholar 

  7. Harper WJ. The strengths and weaknesses of the electronic nose. In: Headspace analysis of foods and flavors, vol. 488. New York: Springer; 2001. p. 59–71.

    Chapter  Google Scholar 

  8. Rock F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108:705–25.

    Article  Google Scholar 

  9. Imahashi M, Hayashi K. Odor clustering based on molecular parameter for odor sensing. Sens Mater. 2014;26:171–80.

    Google Scholar 

  10. Matsumoto H, Kobayakawa K, Kobayakawa R, Tashiro T, Mori K, Sakano H, Mori K. Spatial arrangement of glomerular molecular-feature clusters in the odorant-receptor class domains of the mouse olfactory bulb. J Neurophysiol. 2010;103:3490–500.

    Article  Google Scholar 

  11. Izumi R, Hayashi K, Toko K. Odor sensor with water membrane using surface polarity controlling method and analysis of responses to partial structures of odor molecules. Sens Actuators B. 2004;99:315–22.

    Article  Google Scholar 

  12. Montilla F, Huerta F, Morallon E, Vazquez JL. Electrochemical behaviour of benzene on platinum electrodes. Electrochim Acta. 2000;45:4271–7.

    Article  Google Scholar 

  13. Rammelt U, Reinhard G. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal-electrodes. Electrochim Acta. 1990;35:1045–9.

    Article  Google Scholar 

  14. Hayashi K, Ju MJ, Hayama K, Toko K. Chemical sensor using polarity controlled fractal surface. In: Transducers '01: Eurosensors Xv. Digest of Technical Papers, Volumes 1 and 2; 2001. p. 1770–3.

    Google Scholar 

  15. Hayama K, Hayashi K, Toko K. Functionalization of gold surfaces using benzene-patterned self-assembled monolayers for surface-polarization controlling method. Sens Mater. 2003;15:403–12.

    Google Scholar 

  16. Izumi R, Etoh S, Hayashi K, Toko K. Evaluation of the odor quality by substructures of odor molecules using integrated multi-channel odor sensor. In: Transducers '05. Digest of Technical Papers, Volumes 1 and 2; 2005. p. 1884–7.

    Google Scholar 

  17. Masunaga K, Michiwaki S, Izumi R, Ivarsson P, Bjoerefors F, Lundstrom I, Hayashi K, Toko K. Development of sensor surface with recognition of molecular substructure. Sens Actuators B. 2008;130:330–7.

    Article  Google Scholar 

  18. Hayama K, Tanaka H, Ju MJ, Hayashi K, Toko K. Fabrication of a flow cell for electrochemical impedance measurements. Sens Mater. 2002;14:443–53.

    Google Scholar 

  19. Ju MJ, Hayama K, Hayashi K, Toko K. Discrimination of pungent-tasting substances using surface-polarity controlled sensor with indirect in situ modification. Sens Actuators B. 2003;89:150–7.

    Article  Google Scholar 

  20. Imahashi M, Hayashi K. Odor clustering and discrimination using an odor separating system. Sens Actuators B. 2012;166:685–94.

    Article  Google Scholar 

  21. Jha SK, Hayashi K. A novel odor filtering and sensing system combined with regression analysis for chemical vapor quantification. Sens Actuators B. 2014;200:269–87.

    Article  Google Scholar 

  22. Alexander C, Davidson L, Hayes W. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron. 2003;59:2025–57.

    Article  Google Scholar 

  23. Ge Y, Butler B, Mirza F, Habib-Ullah S, Fei D. Smart molecularly imprinted polymers: recent developments and applications. Macromol Rapid Commun. 2013;34:903–15.

    Article  Google Scholar 

  24. Owens PK, Karlsson L, Lutz ESM, Andersson LI. Molecular imprinting for bio-and pharmaceutical analysis. Trends Anal Chem. 1999;18:146–54.

    Article  Google Scholar 

  25. Lanza F, Sellergren B. The application of molecular imprinting technology to solid phase extraction. Chromatographia. 2001;53:599–611.

    Article  Google Scholar 

  26. Martin-Esteban A. Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Fresenius J Anal Chem. 2001;370: 795–802.

    Article  Google Scholar 

  27. Algieri C, Drioli E, Guzzo L, Donato L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors. 2014;14:13863–912.

    Article  Google Scholar 

  28. Imahashi M, Hayashi K. Concentrating materials covered by molecular imprinted nanofiltration layer with reconfigurability prepared by a surface sol-gel process for gas-selective detection. J Colloid Interface Sci. 2013;406:186–95.

    Article  Google Scholar 

  29. Imahashi M, Watanabe M, Jha SK, Hayashi K. Olfaction-inspired sensing using a sensor system with molecular recognition and optimal classification ability for comprehensive detection of gases. Sensors. 2014;14:5221–38.

    Article  Google Scholar 

  30. Murlis J, Elkinton JS, Carde RT. Odor plumes and how insects use them. Annu Rev Entomol. 1992;37:505–32.

    Article  Google Scholar 

  31. Reidenbach MA, Koehl MAR. The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. Integr Comp Biol. 2009;49:E141.

    Google Scholar 

  32. Ishida H, Nakamoto T, Moriizumi T. Remote sensing of gas/odor source location and concentration distribution using mobile system. Sens Actuators B. 1998;49:52–7.

    Article  Google Scholar 

  33. Ishida H, Tanaka H, Taniguchi H, Moriizumi T. Mobile robot navigation using vision and olfaction to search for a gas/odor source. Auton Robot. 2006;20:231–8.

    Article  Google Scholar 

  34. Jatmiko W, Sekiyama K, Fukuda T. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement. IEEE Comput Intell Mag. 2007;2:37–51.

    Article  Google Scholar 

  35. Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzym Microb Technol. 2011;48:427–37.

    Article  Google Scholar 

  36. Wilson AD. Future applications of electronic-nose technologies in healthcare and biomedicine. In: Akyar I, editor. Wide spectra of quality control. Rijeka: InTech; 2011.

    Google Scholar 

  37. Gong DW, Zhang Y, Qi CL. Localising odour source using multi-robot and anemotaxis-based particle swarm optimisation. IET Control Theory Appl. 2012;6:1661–70.

    Article  Google Scholar 

  38. Airado-Rodriguez D, Hoy M, Skaret J, Wold JP. From multispectral imaging of autofluorescence to chemical and sensory images of lipid oxidation in cod caviar paste. Talanta. 2014;122:70–9.

    Article  Google Scholar 

  39. Matsuo H, Furusawa Y, Imanishi M, Uchida S, Hayashi K. Optical odor imaging by fluorescence probes. J Rob Mechatronics. 2012;24:47–54.

    Google Scholar 

  40. Liu C, Yokoyama R, Uchida S, Nakano K, Hayashi K. Odor spatial distribution visualized by a fluorescent imaging sensor. In: Proceedings of 2013 IEEE Sensors; 2013. pp. 1506–1509.

    Google Scholar 

  41. Chen B, Mokume M, Liu C, Hayashi K. Structure and localized surface plasmon tuning of sputtered Au nano-islands through thermal annealing. Vacuum. 2014;110:94–101.

    Article  Google Scholar 

  42. Chen B, Ota M, Mokume M, Liu C, Hayashi K. High-speed gas sensing using localized surface plasmon resonance of sputtered noble metal nanoparticles. IEEE Trans Sens Micromach. 2013;133:90–5.

    Article  Google Scholar 

  43. Chen B, Liu C, Ota M, Hayashi K. Terpene detection based on localized surface plasma resonance of thiolate-modified Au nanoparticles. IEEE Sens J. 2013;13:1307–14.

    Article  Google Scholar 

  44. Chen B, Liu C, Watanabe M, Hayashi K. Layer-by-layer structured AuNP sensors for terpene vapor detection. IEEE Sens J. 2013;13:4212–9.

    Article  Google Scholar 

  45. Chen B, Liu C, Sun X, Hayashi K. Molecularly imprinted polymer coated Au nanoparticle sensor for α-pinene vapor detection. In: Proceedings of 2013 IEEE Sensors; 2013. pp. 117–120.

    Google Scholar 

  46. Prada P, Furton K. Human scent detection: a review of its developments and forensic applications. Revista de Ciencias Forenses. 2008;1:81–7.

    Google Scholar 

  47. Moser E, McCulloch M. Canine scent detection of human cancers: a review of methods and accuracy. J Vet Behav Clin Appl Res. 2010;5:145–52.

    Article  Google Scholar 

  48. Liu CJ, Furusawa Y, Hayashi K. Development of a fluorescent imaging sensor for the detection of human body sweat odor. Sens Actuators B. 2013;183:117–23.

    Article  Google Scholar 

  49. Liu C, Hayashi K. Visualization of controlled fragrance release from cyclodextrin inclusion complexes by fluorescence imaging. Flavour Fragrance J. 2014;29:356–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenshi Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, C., Hayashi, K. (2015). Odor Sensing Technologies for Visualization of Odor Quality and Space. In: Lin, YL., Kyung, CM., Yasuura, H., Liu, Y. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14711-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14711-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14710-9

  • Online ISBN: 978-3-319-14711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics