Skip to main content

Chemomechanical Transduction Systems: A Sensing Platform by Surface Force Measurement

  • Chapter
Smart Sensors and Systems
  • 2565 Accesses

Abstract

The transduction of chemical binding event into a mechanical deformationhas been developed as a label free sensing platform with potentially mobile detection setups. In this chapter we will describe the basic and engineering principles of the chemomechanical transduction with key example applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Güntherodt H-J. Surface stress in the self-assembly of alkanethiols on gold. Science. 1997;276(27):2021–4.

    Article  Google Scholar 

  2. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt H-J, Gerber C,Gimzewski JK. Translating biomolecular recognition into nanomechanics. Science. 2000;288:316–8.

    Article  Google Scholar 

  3. Yue M, Stachowiak JC, Lin H, Datar R, Cote R, Majumdar A. Label-free protein recognition two-dimensional array using nanomechanical sensors. Nano Lett. 2008;8(2):520–4.

    Article  Google Scholar 

  4. Sang S, Witte H. A novel PDMS micro membrane biosensor based on the analysis of surface stress. Biosens Bioelectron. 2010;25(11):2420–4.

    Article  Google Scholar 

  5. Datar R, Kim S, Jeon S, Hesketh P, Manalis S, Boisen A, Thundat T. Cantilever sensors: nanomechanical tools for diagnostics. In: MRS Bulletin. 2009. p. 449–54.

    Google Scholar 

  6. Gil-Santos E, et al. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. Nano Lett. 2009;9(12):4122–7.

    Article  Google Scholar 

  7. Carlen ET, et al. Micromachined silicon plates for sensing molecular interactions. Appl Phys Lett. 2006;89(17):173123.

    Article  Google Scholar 

  8. Wu Z, Choudhury K, Griffiths HR, Xu J, Ma X. A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis. Biomed Microdevices. 2012;14(1):83–93.

    Article  Google Scholar 

  9. Zapata AM, Carlen ET, Kim ES, Hsiao J, Traviglia D, Weinberg MS. Biomolecular sensing using surface micromachined silicon plates. In: The 14th international conference on solid-state sensors, actuators and microsystems. Lyon, France; 2007. p. 831–4.

    Google Scholar 

  10. Lim S-HS, et al. Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis. Sens Actuators B. 2006;119(2):466–74.

    Article  Google Scholar 

  11. Xu T, et al. Micro-machined piezoelectric membrane-based immunosensor array. Biosens Bioelectron. 2008;24(4):638–43.

    Article  MATH  Google Scholar 

  12. Satyanarayana S, McCormick DT, Majumdar A. Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Actuators B. 2006;115(1):494–502.

    Article  Google Scholar 

  13. Cha M, et al. Biomolecular detection with a thin membrane transducer. Lab Chip. 2008;8(6):932–7.

    Article  Google Scholar 

  14. Kang TJ, Lim D-K, Nam J-M, Kim YH. Multifunctional nanocomposite membrane for chemomechanical transducer. Sens Actuators B. 2010;147:691–6.

    Article  Google Scholar 

  15. Lang HP, et al. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology. 2002;13(5):R29–36.

    Article  Google Scholar 

  16. Heine V, Marks LD. Competition between pair-wise and volume forces at noble metal surfaces. Surf Sci. 1986;165:65.

    Article  Google Scholar 

  17. Godin M. Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers. In: Physics. Montreal, QC: McGill University; 2004.

    Google Scholar 

  18. Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep. 1997;29(5–6):195–263.

    Article  Google Scholar 

  19. Shuttleworth R. The surface tension of solids. In: Proceedings of the physical society. Section A; 1950.

    Google Scholar 

  20. Finot M, Suresh S. Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients. J Mech Phys Solids. 1996;44(5): 683–721.

    Article  Google Scholar 

  21. Ko WH, Qiang W. Touch mode capacitive pressure sensors for industrial applications. In: Tenth annual international workshop on micro electro mechanical systems, 1997. MEMS ’97, Proceedings, IEEE; 1997.

    Google Scholar 

  22. Timoshenko S. Theory of plates and shells. McGraw-Hill Classic Textbook Reissue; 1959.

    Google Scholar 

  23. Szilard R. Theory and analysis of plates: classical and numerical methods. Englewood Cliffs: Prentice-Hall; 1974.

    MATH  Google Scholar 

  24. Maisano J. More advanced models for silicon condenser microphones. In: 92nd convention of the audio engineering society. Vienna, Austria; 1992.

    Google Scholar 

  25. Bert CW, Martindale JL. An accurate, simplified method for analyzing thin plates undergoing large deflections. Am Inst Aeronaut Astronaut (AIAA) J. 1988;26(2):235–41.

    Article  Google Scholar 

  26. Chatzandroulis S, et al. Capacitive-type chemical sensors using thin silicon/polymer bimorph membranes. Sens Actuators B. 2004;103(1–2):392–6.

    Article  Google Scholar 

  27. Wu G, et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol. 2001;19(9):856–60.

    Article  Google Scholar 

  28. Pei J, Tian F, Thundat T. Glucose biosensor based on the microcantilever. Anal Chem. 2004;76(2):292–7.

    Article  Google Scholar 

  29. Rugar D, Mamin HJ, Guethner P. Improved fiber‐optic interferometer for atomic force microscopy. Appl Phys Lett. 1989;55(25):2588–90.

    Article  Google Scholar 

  30. Yaralioglu GG, et al. Analysis and design of an interdigital cantilever as a displacement sensor. J Appl Phys. 1998;83(12):7405–15.

    Article  Google Scholar 

  31. Sang S. An approach to the design of surface stress-based PDMS micro-membrane biosensors-concept, numerical simulations and prototypes. Ilmenau: University of Bibliothek; 2010.

    Google Scholar 

  32. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8(9):871–4.

    Article  Google Scholar 

  33. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.

    Article  Google Scholar 

  34. Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981;112(2):195–203.

    Article  Google Scholar 

  35. Dugas V, Elaissari A, Chevalier Y. Surface sensitization techniques and recognition receptors immobilization on biosensors and microarrays. In: Zourob M, editor. Recognition receptors in biosensors. New York: Springer; 2010. p. 47–134.

    Chapter  Google Scholar 

  36. www.aptagen.com/home.aspx. Aptamer. 2013 [cited 2013 19th Oct.].

  37. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628–50.

    Google Scholar 

  38. WIKIPEDIA. Dissociation constant.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, J., Choi, Jk. (2015). Chemomechanical Transduction Systems: A Sensing Platform by Surface Force Measurement. In: Lin, YL., Kyung, CM., Yasuura, H., Liu, Y. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14711-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14711-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14710-9

  • Online ISBN: 978-3-319-14711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics