Skip to main content

Design of Ultra-Low-Power Electrocardiography Sensors

  • Chapter
  • 2595 Accesses

Abstract

In this chapter, we present two key designs for ultra-low-power electrocardiography sensors, i.e., an event-driven analog-to-digital converter (ADC) and an on-off keying (OOK) transceiver. For the ADC, two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. For the transceiver SoC, we propose a novel supply isolation scheme to avoid the instability induced by such a high receiver gain, use bond wires as inductors to reduce the transmitter power, and utilize near-threshold design (NTD) method for low power digital baseband. Fabricated in 0.13 \(\upmu \mathrm{m}\) CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector. The transceiver SoC is fully integrated with a 10 Mb/s transceiver, digital processing units, an 8051 micro-controlled unit (MCU), a successive approximation (SAR) ADC, and etc. The receiver consumes 0.214 nJ/bit at − 65 dBm sensitivity, and the Tx energy efficiency is 0.285 nJ/bit at an output power of − 5. 4 dBm. In addition, the digital baseband consumes 34.8 pJ/bit with its supply voltage lowered to 0.55 V, indicating its energy per bit is reduced to nearly 1/4 of the super-threshold operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics - 2012 update. Circulation. 2012;125(1):e2–e220.

    Article  Google Scholar 

  2. Zou X, Xu X, Yao L, Lian Y. A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J Solid-State Circuits. 2009;44(4):1067–77.

    Article  Google Scholar 

  3. Jocke SC, Bolus JF, Wooters SN, Jurik AD, Weaver AC, Blalock TN, Calhoun BH. A 2.6-\(\upmu\) W sub-threshold mixed-signal ECG SoC. In: Proceedings of IEEE Symposium on VLSI Circuits; 2009. pp. 60–1.

    Google Scholar 

  4. Deepu CJ, Xu XY, Zou XD, Yao LB, Lian Y. An ECG-on-chip for wearable cardiac monitoring devices. In: Proceedings of Fifth IEEE International Symposium on Electronic Design, Test and Application DELTA ’10; 2010. pp. 225–8.

    Google Scholar 

  5. Yazicioglu RF, Kim S, Torfs T, Kim H, Van Hoof C. A \(30\,\upmu \mathrm{W}\) analog signal processor ASIC for portable biopotential signal monitoring. IEEE J Solid-State Circuits. 2010;46(1):209–23.

    Article  Google Scholar 

  6. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.

    Article  Google Scholar 

  7. Kurchuk M, Tsividis Y. Signal-dependent variable-resolution clockless A/D conversion with application to continuous-time digital signal processing. IEEE Trans Circuits Syst I. 2010;57(5):982–91.

    Article  MathSciNet  Google Scholar 

  8. Daly D, Chandrakasan A. An energy-efficient OOK transceiver for wireless sensor networks. IEEE J Solid-State Circuits. 2007;42(5):1003–11.

    Article  Google Scholar 

  9. Liu X, Demosthenous A, Jiang D, Vanhoestenberghe A, Donaldson N. A stimulator asic with capability of neural recording during inter-phase delay. In: Proceedings of the ESSCIRC (ESSCIRC), 2011; Sept 2011. pp. 215–18.

    Google Scholar 

  10. Vidojkovic M, Huang X, Harpe P, Rampu S, Zhou C, Huang L, Imamura K, Busze B, Bouwens F, Konijnenburg M, Santana J, Breeschoten A, Huisken J, Dolmans G, De Groot H. A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC); 2011. pp. 458–60.

    Google Scholar 

  11. Tsividis Y. Event-driven data acquisition and continuous-time digital signal processing. In: Proceedings of IEEE Custom Integrated Circuits Conference; 2010. pp. 1–8.

    Google Scholar 

  12. Inose H, Aoki T, Watanabe K. Asynchronous delta-modulation system. Electron Lett. 1966;2(3):95–6.

    Article  Google Scholar 

  13. Wang Y, Deepu CJ, Lian Y, A computationally efficient QRS detection algorithm for wearable ECG sensors. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011. pp. 5641–4.

    Google Scholar 

  14. Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng. 1995;42(1):21–8.

    Article  Google Scholar 

  15. Agarwal R, Sonkusale SR. Input-feature correlated asynchronous analog to information converter for ECG monitoring. IEEE Trans Biomed Circuits Syst. 2011;5(5):459–67.

    Article  Google Scholar 

  16. Afonso V, Tompkins W, Nguyen T, Luo S. ECG beat detection using filter banks. IEEE Trans Biomed Eng. 1999;46(2):192–202.

    Article  Google Scholar 

  17. Poli R, Cagnoni S, Valli G. Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans Biomed Eng. 1995;42(11):1137–41.

    Article  Google Scholar 

  18. Trahanias P. An approach to QRS complex detection using mathematical morphology. IEEE Trans Biomed Eng. 1993;40(2):201–5.

    Article  Google Scholar 

  19. Sayiner N, Sorensen H, Viswanathan T. A level-crossing sampling scheme for A/D conversion. IEEE Trans Circuits Syst II. 1996;43(4):335–9.

    Article  Google Scholar 

  20. Schell B, Tsividis Y. Analysis of continuous-time digital signal processors. In: Proceedings of IEEE International Symposium on Circuits and Systems; May 2007. pp. 2232–5.

    Google Scholar 

  21. Balasubramanian V, Heragu A, Enz C. Analysis of ultralow-power asynchronous ADCs. In: Proceedings of IEEE International Symposium on Circuits and Systems; 2010. pp. 3593–6.

    Google Scholar 

  22. Bazes M. Two novel fully complementary self-biased CMOS differential amplifiers. IEEE J Solid-State Circuits. 1991;26(2):165–8.

    Article  Google Scholar 

  23. Chatterjee S, Tsividis Y, Kinget P. 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J Solid-State Circuits. 2005;40(12):2373–87.

    Google Scholar 

  24. Abo AM. Design for reliability of low-voltage, switched-capacitor circuits. Ph.D. dissertation. Berkeley: University of California; 1999.

    Google Scholar 

  25. Schell B, Tsividis Y. A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J Solid-State Circuits. 2008;43(11):2472–81.

    Article  Google Scholar 

  26. Kurchuk M, Tsividis Y. Energy-efficient asynchronous delay element with wide controllability. In: Proceedings of IEEE International Symposium on Circuits and Systems; 2010. pp. 3837–40.

    Google Scholar 

  27. Kim G, Kim M-K, Chang B-S, Kim W. A low-voltage, low-power CMOS delay element. IEEE J Solid-State Circuits. 1996;31(7):966–71.

    Article  Google Scholar 

  28. Jeong C, Qu W, Sun Y, Yoon D, Han SK, Lee SG. A 1.5V, 140 μA CMOS ultra-low power common-gate LNA. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2011. pp. 1–4.

    Google Scholar 

  29. Feng L, Mao Y, Cheng Y. An efficient and stable power management circuit with high output energy for wireless powering capsule endoscopy. In: IEEE Asian Solid State Circuits Conference (A-SSCC); 2011. pp. 229–32.

    Google Scholar 

  30. Maxim A, Poorfard R, Johnson R, Crawley P, Kao J, Dong Z, Chennam M, Nutt T, Trager D, Reid M.A fully integrated \(0.13\,\upmu \mathrm{m}\) CMOS Low-IF DBS satellite tuner using automatic signal-path gain and bandwidth calibration. IEEE J Solid-State Circuits. 2007;42(4):897–921.

    Google Scholar 

  31. Zhao B, Lian Y, Yang H. A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme. IEEE Trans Circuits Syst Regul Pap. 2013;60(5):1188–99.

    Article  Google Scholar 

  32. Steele R. Delta modulation systems. London:Pentech Press; 1975.

    Google Scholar 

  33. Trakimas M, Sonkusale SR. An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans Circuits Syst I. 2011;58(5):921–34.

    Article  MathSciNet  Google Scholar 

  34. Weltin-Wu C, Tsividis Y. An event-driven, alias-free ADC with signal-dependent resolution. In: Proceedings of IEEE Symposium on VLSI Circuits; 2012. pp. 28–9.

    Google Scholar 

  35. Tang W, Osman A, Kim D, Goldstein B, Huang C, Martini B, Pieribone VA, Culurciello E. Continuous time level crossing sampling adc for bio-potential recording systems. IEEE Trans Circuits Syst I. 2013;60(6):1407–18.

    Article  Google Scholar 

  36. Li Y, Zhao D, Serdijn W. A sub-microwatt asynchronous level-crossing adc for biomedical applications. IEEE Trans Biomed Circuits Syst. 2013;7(2):149–57.

    Article  Google Scholar 

  37. Ieong C-I, Mak P-I, Lam C-P, Dong C, Vai M-I, Mak P-U, Pun S-H, Wan F, Martins RP. A 0.83-\(\upmu\) W QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-\(\upmu\) m CMOS. IEEE Trans Biomed Circuits Syst. 2012;6(6):586–95.

    Google Scholar 

  38. Abdallah R, Shanbhag N. A 14.5 fJ/cycle/k-gate, 0.33 V ECG processor in 45nm CMOS using statistical error compensation. In: Proceedings of IEEE Custom Integrated Circuits Conference; Sept 2012. pp. 1–4.

    Google Scholar 

  39. Zhang F, Lian Y. QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans Biomed Circuits Syst. 2009;3(4):220–8.

    Article  Google Scholar 

  40. Wang H-M, Lai Y-L, Hou M, Lin S-H, Yen B, Huang Y-C, Chou L-C, Hsu S-Y, Huang S-C, Jan M-Y. A ±6 ms-accuracy, 0.68 mm2 and \(2.21\,\upmu \mathrm{W}\) QRS detection ASIC. In: Proceedings of IEEE International Symposium on Circuits and Systems; 2010. pp. 1372–75.

    Google Scholar 

  41. Liu J, Li C, Chen L, Xiao Y, Wang J, Liao H, Huang R. An ultra-low power 400 MHz OOK transceiver for medical implanted applications. In: European Solid-State Circuis Conference (ESSCIRC); 2011. pp. 175–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X. et al. (2015). Design of Ultra-Low-Power Electrocardiography Sensors. In: Lin, YL., Kyung, CM., Yasuura, H., Liu, Y. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14711-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14711-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14710-9

  • Online ISBN: 978-3-319-14711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics