Skip to main content

Path Planning Kinematics Simulation of CNC Machine Tools Based on Parallel Manipulators

  • Chapter
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

Since the very successful application of parallel robots in material handling, many projects attempted to implement the Gough platforms as milling machine manipulators with limited success mainly achieving roughing. The displacement of the milling tool should meet surface finish requirements while increasing tool feedrate in order to improve productivity. This work introduces geometric formalization of surface finish which is more realistic then classic error calculations. This research work also proposes an off-line simulation tool analysing the milling task feasibility using a robot constituted by a general hexapod parallel manipulator, controlled by a typical CNC controller implementing classic position based algorithms where joint space polynomial interpolation is utilized. High and very high speed milling simulation results show the implementation of linear and third order interpolation between the actuator set-points calculated from the CAD/CAM computed end-effector or tool set-points. Linear interpolation is not sufficient for high speed milling and then third order interpolation reach the required surface finish at feasible CNC sampling rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdellatif H, Heimann B (2005) Adapted time-optimal trajectory planning for parallel manipulators with full dynamic modelling. In: IEEE international conference on robotics and automation. Barcelona, 19–22 April 2005, pp 413–418

    Google Scholar 

  2. Bayaziz OB, Xie D, Anamato NM (2005) Iterative relaxation of constraints: a framework for improving automated motion planning. In: IEEE international conference on robotics and automation. Barcelona, 19–22 April 2005 pp 3433–3440

    Google Scholar 

  3. Bhattacharya S, Hatwal H, Ghosh A (1998) Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators. Mech Mach Theory 33(7):965–974

    Article  MATH  Google Scholar 

  4. Bohigas O et al (2012) A singularity-free path planner for closed-chain manipulators. In: IEEE international conference on robotics and automation, Saint Paul, 14–18 May 2012 pp 2128–2134

    Google Scholar 

  5. Bohigas O, Manubens M, Ros L (2012) Planning singularity-free force-feasible paths on the stewart platform. In: ARK. Innsbruck, 25–28 June 2012 pp 245–253

    Google Scholar 

  6. Brady M et al (1982) Robot motion: planning and control. MIT Press, Cambridge

    Google Scholar 

  7. Briot S, Arakelian V (2008) Optimal force generation in parallel manipulators for passing through the singular positions. Int J Robot Res 27(2):967–983

    Article  Google Scholar 

  8. Carbone G, Gmez-Bravo F, Selvi O (2012) An experimental validation of collision-free trajectories for parallel manipulators. Mech Based Des Struct Mach 40(4):414–433

    Article  Google Scholar 

  9. Carbone G et al (1997) An optimum path planning for Cassino parallel manipulator by using inverse dynamics. Robotica 26(02):229–239

    Google Scholar 

  10. Chablat D, Wenger P (1998) Moveability and collision analysis for fully-parallel manipulators. In: 12th RoManSy, Paris, 6–9 July 1998 pp 61–68

    Google Scholar 

  11. Chedmail P, Hascoet JY, Guerin F (1994) Collision detection analysis for milling. Adv Manuf Syst 1:247–252

    Google Scholar 

  12. Chen C-T, Chi H-W (2008) Singularity-free trajectory planning of platform-type parallel manipulators for minimum actuating efforts and reactions. Robotica 26(3):371–384

    Article  Google Scholar 

  13. Chen C-T, Liao TT (2008) Optimal path programming of the Stewart platform manipulator using the Boltzmann-Hamel-d’Alembert dynamics formulation model. Adv Robot 22(6–7):705–730

    Article  MathSciNet  Google Scholar 

  14. Chen Y, McInroy JE, Yi Y (2003) Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance. IEEE trans robot autom, vol 19(4). University Park, pp 681–691

    Google Scholar 

  15. Coiffet P (1986) Les robots, tome 1, modelisation et commande. Hermes, Paris

    Google Scholar 

  16. Corts J (2003) Motion planning algorithms for general closed-chain mechanisms. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, 16 December 2003

    Google Scholar 

  17. Corts J, Simon T, Laumond J-P (2002) A random loop generator for planning the motions of closed kinematic chains using PRM methods. In: IEEE international conference on robotics and automation. Washington, 11–15 May 2002 pp 2141–2146

    Google Scholar 

  18. Corts J, Simon T (2003) Probabilistic motion planning for parallel mechanisms. In: IEEE international conference on robotics and automation Taipei, 14–19 September 2003 pp 4354–4359

    Google Scholar 

  19. Dallefrate D et al (2002) A feed rate optimization technique for high-speed CNC machining with parallel manipulators. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, 23–25 April 2002 pp 371–388

    Google Scholar 

  20. Daney D (2000) Etalonnage geometric des robots paralleles. Ph.D. thesis, Universite de Nice-Sophia Antipolis

    Google Scholar 

  21. Dasgupta B, Mruthyunjaya TS (1998) Singularity-free path planning for the Stewart platform manipulator. Mech Mach Theory 33(6):711–725

    Article  MathSciNet  Google Scholar 

  22. Dash AK et al (2002) Workspace analysis and singularity-free path planning of parallel manipulators. In: International conference on mechatronics technology (ICMT), Fukuoka, 29 September–3 October 2002 pp 457–462

    Google Scholar 

  23. Dash AK et al (2003) Singularity-free path planning of parallel manipulators using clustering algorithm and line geometrie. In: IEEE international conference on robotics and automation, Taipei, 14–19 September 2003 pp 761–766

    Google Scholar 

  24. Dash AK et al (2005) Workspace generation and planning singularity-free path for parallel manipulators. Mech Mach Theory 40(7):778–805

    Article  MathSciNet  Google Scholar 

  25. Depince P, Hascoet JY, Furet B (1997) Compensation de trajectoire d’usinage: simulation et experimentation. In: Proceedings of 13e Congrs franais de mcanique, vol 3. pp 293–296

    Google Scholar 

  26. Dombre E, Khalil W (1999) Modelisation, identification et commande des robots, seconde dition. Robotique. Hermes, traite des nouvelles technologies edition

    Google Scholar 

  27. Huang T et al (2007) Time minimum trajectory planning of a 2-DoF translation parallel robot for pick-and-place operations. Ann CIRP 56/1/2007:365–368

    Google Scholar 

  28. Jui CKK, Sun Q (2003) Path trackability and verification for parallel manipulators. In: IEEE international conference on robotics and automation. Taipei, 14–19 September 2003 pp 4336–4341

    Google Scholar 

  29. Khoukhi A, Baron L, Balazinski M (2009) Constrained multi-objective trajectory planning of parallel kinematic machines. Robot Comput-Integr Manuf 25(4–5):756–769

    Article  Google Scholar 

  30. Lahouar S, Zeghloul S, Romdhane L (2008) Singularity free path planning for parallel robots. Analysis and design: advances in robot kinematics, pp 235–242

    Google Scholar 

  31. Latombe JC (1991) Robot motion planning. Kluwer Academic Publisher, Boston

    Book  Google Scholar 

  32. Liegeois A (1984) Les robots, tome 7, analyse des performances et CAO. Hermes, Paris

    Google Scholar 

  33. Liu G, Trinkle JC, Shvalb N (2006) Motion planning for a class of planar closed-chain manipulators. In: IEEE international conference on robotics and automation, Orlando, 16–18 May 2006 pp 133–138

    Google Scholar 

  34. Lozano-Prez T, Wesley M (1979) An algorithm for planning collision-free paths among polyhedral obstacles. In: Communications of ACM, vol 22, pp 560–570

    Google Scholar 

  35. Luh JYS, Lin CS (1981) Optimum path planning for mechanical manipulators. Trans ASME 142–151

    Google Scholar 

  36. Magnin R, et Urso JP (1991) Commande numerique, programmation. Memotech

    Google Scholar 

  37. Marty C, Cassagnes C, La Martin P (1993) pratique de la commande numerique des machines-outils. Technique et documentation. Lavoisier, Paris

    Google Scholar 

  38. Masory O, Xiu D (1998) Contour errors in a new class of CNC machine tools. In: Proceedings of WAC98, vol 1, pp 791–798

    Google Scholar 

  39. Merlet JP (1993) Manipulateurs paralleles, septieme partie: Verification et planification de trajectoire dans l’espace de travail. Technical Report 1940, INRIA, Sophia-Antipolis, June 1993

    Google Scholar 

  40. Merlet J-P (2000) An efficient trajectory verifier for motion planning of parallel machine. In: Parallel kinematic machines international conference, Ann Arbor, 14–15 September 2000

    Google Scholar 

  41. Merlet J-P (2001) A generic trajectory verifier for the motion planning of parallel robots. J Mech Des 123(4):510–515

    Article  MathSciNet  Google Scholar 

  42. Merlet J-P (2007) A local motion planner for closed-loop robots. In: IEEE international conference on intelligent robots and systems (IROS), San Diego, 22–26 September 2007 pp 3088–3093

    Google Scholar 

  43. Merlet J-P, Mouly N (1994) Espace de travail et planification de trajectoire des robots parallles plans. Technical Report 2291, INRIA, Sophia-Antipolis, February 1994

    Google Scholar 

  44. Merlet JP, Perng MW, Daney D (2000) Optimal trajectory planning of 5-axis machine-tool based on a 6-axis parallel manipulator. Adv Robot Kinemat 1(1):315–322

    Article  Google Scholar 

  45. Mery B (1997) Machines a commande numerique. Hermes, Paris

    Google Scholar 

  46. Nenchev DN, Uchiyama M (1996) Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type. In: IEEE international conference on robotics and automation. Minneapolis, 24–26 April 1996 pp 1864–1870

    Google Scholar 

  47. Nguyen CC et al (1992) Trajectory planning and control of a Stewart platform-based end-effector with passive compliance for part assembly. J Intell Robot Syst 6(2–3):263–281

    Google Scholar 

  48. Nilsson N (1969) A mobile automaton: an application of artificial intelligence. In: Proceedings of the international joint conference on artificial intelligence, pp 509–520

    Google Scholar 

  49. Oen K-T, Wang L-CT (2007) Optimal dynamic trajectory planning for linearly actuated platform type parallel manipulators having task space redundant degree of freedom. Mech Mach Theory 42(7):727–750

    Article  MATH  MathSciNet  Google Scholar 

  50. Patel A, Ehmann K (1997) Volumetric error analysis of a Stewart platform based machine tool. In: Annals of the CIRP, vol 46, pp 287–290

    Google Scholar 

  51. Pouyan A et al (2010) Eliminating redundancy and singularity in robot path planning based on masking. Expert Syst Appl 37(9):6213–6217

    Article  Google Scholar 

  52. Pugazhenthi S, Nagarajan T, Singaperumal M (2002) Optimal trajectory planning for a hexapod machine tool during contour machining. Proceed Inst Mech Eng Part C, J Mech Eng Sci A 216(12):1247–1257

    Google Scholar 

  53. Merlet JP (1997) Les Robots Parallel, 2nd edn. Herms, Paris

    Google Scholar 

  54. Dieudonne JE, Parrish RV, Bardusch RE (1972) An actuator extension transformation for a motion simulator and an inverse transformation applying Newton-Raphson’s method, Technical Report D-7067. NASA, Washington

    Google Scholar 

  55. Lazard D (1993) On the representation of rigid-body motions and its application to generalized platform manipulators. J Comput Kinemat 1:175–182

    Article  Google Scholar 

  56. Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME J Mech Des 115:277–282

    Article  Google Scholar 

  57. Raghavan M, Roth B (1995) Solving polynomial systems for the kinematic analysis and synthesis of mechanisms and robot manipulators. Trans ASME 117:71–79

    Article  Google Scholar 

  58. Rolland L (2001) Introduction to algebraic methods for solving the forward kinematics problem of parallel robots applied to high throughput and high accuracy. In: 3rd European-Asian congress on mechatronics, Besancon, 9–11 October 2001

    Google Scholar 

  59. Rolland L (2005) Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator. Adv Robot 19(9):995–1025

    Article  Google Scholar 

  60. Rolland L (2008) Synthesis on modeling and certified solving of the kinematics problems of Gough-type parallel manipulator with an exact algebraic method. In: Wu H (ed) Parallel manipulators, towards new applications. I-Tech Education and Publishing, Vienna, pp 175–206

    Google Scholar 

  61. Salerni G (1995) The linear delta. Technical report, University of Pisa

    Google Scholar 

  62. Shulz et al (1999) Dynamic stiffness and contouring accuracy of a HSC linear motor machine. In: Proceedings of the 2nd international conference on high speed machining, vol 1. Darmstadt, pp 75–83

    Google Scholar 

  63. Shulz H, Gao H, Stanik B (1999) Analysis and optimization of the dynamic contouring accuracy using the example of a linear motor machine tool. In: Proceedings of the 2nd international conference on high speed machining, vol 1. Darmstadt, pp 107–115

    Google Scholar 

  64. Sen S, Dasgupta B, Mallik AK (2003) Variational approach for singularity-path planning of parallel manipulators. Mech Mach Theory 38(11):1165–1183

    Article  MATH  MathSciNet  Google Scholar 

  65. Shaw D, Chen Y-S (2001) Cutting path generation of the Stewart platform-based milling machine using an end-mill. Int J Prod Res 39(7):1367–1383

    Article  Google Scholar 

  66. Soni AH, Tanasi GC, Varanasi S (1995) Closed-loop multi-degree freedom mechanisms for surface generation and patching in machining 3d surfaces. In: 9th IFToMM world congress on the theory of machines and mechanisms. Milan, 30 August-2 September pp 2668–2674

    Google Scholar 

  67. Su H-J, Dietmaier P, McCarthy JM (2003) Trajectory planning for constrained parallel manipulators. ASME J Mech Des 125(4):709–716

    Article  Google Scholar 

  68. Takeda Y (2005) Kinematic analysis of parallel mechanisms at singular points at which a connecting chain has local mobility. In: Computational kinematics, Cassino, 4–6 May 2005

    Google Scholar 

  69. Taylor R (1979) Planning and execution of straight line manipulator. IBM J Res Dev 23(4):424–436

    Article  Google Scholar 

  70. Tchon K et al (2012) Motion planning for parallel robots with non-holonomic joints. In: ARK, Innsbruck, 25–28 June 2012 pp 115–122

    Google Scholar 

  71. Tournassoud P (1992) Planification et controle en robotique, application aux robots mobiles et manipulateurs. Robotique. Hermes, Paris, Traité des nouvelles technologies edition

    Google Scholar 

  72. Trinkle JC, Milgram RJ (2002) Complete path planning for closed kinematic chains with spherical joints. Int J Robot Res 21(9):773–789

    Article  Google Scholar 

  73. Udupa SM (1977) Collision detection and avoidance in computer controlled manipulators. In: Proceedings of the international joint conference on artificial intelligence, pp 737–748

    Google Scholar 

  74. Ur-Rehman R, Caro S, Chablat D, Wenger P (2010) Multi-objective path placement of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the Orthoglide. Mech Mach Theory 45(8):1125–1141

    Article  MATH  Google Scholar 

  75. Vaca R, Aranda J, Thomas F (2012) Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms. In: ARK, Innsbruck, 25–28 June 2012 pp 157–164

    Google Scholar 

  76. Vaishnav RN, Magrab EB (1987) A general procedure to evaluate robot positioning error. Int J Robot Res 6(1):59–74

    Article  Google Scholar 

  77. Yakey JH et al (2001) Randomized path planning for linkages with closed kinematic chains. IEEE Trans Robot Autom 17(6):951–958

    Article  Google Scholar 

Download references

Acknowledgments

This research work was produced by the author during his PhD and with special funding from the Lorraine Region, the INRIA and CMW-Marioni. It has helped French hexapod manufacturers to fine-tune their milling machines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rolland, L. (2015). Path Planning Kinematics Simulation of CNC Machine Tools Based on Parallel Manipulators. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics