Skip to main content

Off-Line and On-Line Trajectory Planning

  • Chapter
  • First Online:
Motion and Operation Planning of Robotic Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

The basic problem of motion planning is to select a path, or trajectory, from a given initial state to a destination state, while avoiding collisions with known static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be computed online, during motion, to allow the robot react to changes in the environment, to a moving target, and to errors encountered during motion. However, the inherent difficulty in solving this problem, which stems from the high dimensionality of the search space, the geometric and kinematic properties of the obstacles, the cost function to be optimized, and the robot’s kinematic and dynamic model, may hinder a sufficiently fast solution to be computed online, given reasonable computational resources. As a result, existing work on motion planning can be classified into off-line and on-line planning. Off-line planners compute the entire path or trajectory to the goal before motion begins, whereas on-line planners generate the trajectory to the goal incrementally, during motion. This chapter reviews the main approaches to off-line and on-line planning, and presents one solution for each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The switching time of the slowest axis occurs when its trajectory reaches one of the switching curves given in (18).

  2. 2.

    The obstacle hole is a subset of the obstacle shadow.

References

  1. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

    Google Scholar 

  2. Shiller Z, Dubowsky S (1991) On computing the global time optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797

    Article  Google Scholar 

  3. Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge

    Google Scholar 

  4. Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570

    Article  Google Scholar 

  5. Lumelsky VJ, Stepanov A (1987) Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430

    Article  MATH  MathSciNet  Google Scholar 

  6. Schwartz JT, Sharir M (1983) On the piano movers’ problem: the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345–398

    Article  MATH  MathSciNet  Google Scholar 

  7. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    Article  Google Scholar 

  8. Manor G, Rimon E (2013) Vc-method: high-speed navigation of a uniformly braking mobile robot using position-velocity configuration space. Auton Robot 34(4):295–309

    Article  Google Scholar 

  9. Lozano-Perez T (1987) A simple motion planning algorithm for robotic manipulators. IEEE Trans Robot Autom RA-3(3):224–238

    Google Scholar 

  10. Wein R, van den Berg JP, Halperin D (2005) The visibility-Voronoi complex and its applications. In: Proceedings of 21st symposium on computational geometry, pp 63–72

    Google Scholar 

  11. Alexopolous C, Griffin PM (1992) Path planning for a mobile robot. IEEE Trans Syst Man Cybern 22(2):318–322

    Article  Google Scholar 

  12. Liu YH, Arimoto S (1992) Path planning using a tangent graph for mobile robots among polygonal and curved obstacles. Int J Robot Res 11(4):376–382

    Article  Google Scholar 

  13. LaValle SM (2010) Motion planning: the essentials. IEEE Robot Autom Mag 110

    Google Scholar 

  14. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271

    Article  MATH  MathSciNet  Google Scholar 

  15. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization, algorithms and complexity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  16. Shiller Z, Gwo YR (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249

    Article  Google Scholar 

  17. Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical Report 98-11, Department of CS, Iowa State University

    Google Scholar 

  18. Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J Comput Geom Appl 4:495–512

    Article  MathSciNet  Google Scholar 

  19. Mazer E, Ahuactzin JM, Bessiere P (1998) The Ariadnes clew algorithm. J Artif Intell 9:295–316

    MATH  Google Scholar 

  20. Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using the rrt*. In: International conference on robotics and automation

    Google Scholar 

  21. Amato NM, Bayazit OB, Dale LK (2000) Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Trans Robot Autom 16(4):442–447

    Article  Google Scholar 

  22. Gmez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid manipulators. Mechatronics 22(6):836–851. Special Issue on Intelligent Mechatronics

    Google Scholar 

  23. Bryson AE, Ho YC (1969) Applied optimal control. Blaisdell Publishing Company, Cambridge

    Google Scholar 

  24. Kiriazov P, Marinov P (1985) A method for time-optimal control of dynamically constrained manipulator. Theory and practice of robotics and manipulators. MIT Press, Cambridge, pp 169–178

    Chapter  Google Scholar 

  25. Niv M, Auslander DM (1984) Optimal control of a robot with obstacles. In: Proceedings of American control conference (San Diego, CA), June 1984, pp 280–287

    Google Scholar 

  26. Khan ME, Roth B (1971) The near-minimum time control of open loop articulated kinematic chains. J Dyn Syst Meas Control 93(3):164–172

    Article  Google Scholar 

  27. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators. IJRR 4(3):3–17

    Google Scholar 

  28. Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom RA-3(3):115–123

    Google Scholar 

  29. Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control AC-30(6):531–541

    Google Scholar 

  30. Shiller Z, Lu HH (1992) Computation of path constrained time-optimal motions with dynamic singularities. ASME J Dyn Syst Meas Control 14(1):34–40

    Article  Google Scholar 

  31. Slotine JE, Yang HS (1989) Improving the efficiency of time optimal path following algorithms. IEEE Trans Robot Autom 5(1):118–124

    Article  Google Scholar 

  32. Tarkiainen M, Shiller Z (1993) Time optimal motions of manipulators with actuator dynamics. In: Proceedings of 1993 IEEE international conference on robotics and automation, vol 2, pp 725–730

    Google Scholar 

  33. Bobrow JE (1988) Optimal robot path planning using the minimum time criterion. IEEE Trans Robot Autom 4(4):443–450

    Article  Google Scholar 

  34. Shiller Z, Dubowsky S (1989) Time-optimal path-planning for robotic manipulators with obstacles, actuator, gripper and payload constraints. IJRR 8(6):3–18

    Google Scholar 

  35. Seywald H (1994) Trajectory optimization based on differential inclusion. J Guid, Control, Dyn 17(3):480–487

    Article  MATH  MathSciNet  Google Scholar 

  36. Bryson AE (1999) Dynamic optimization. Addison Wesley, New York

    Google Scholar 

  37. Donald B, Xavier P (1989) A provably good approximation algorithm for optimal-time trajectory planning. In: Proceedings of IEEE conference on robotics and automation, May 1989, pp 958–963

    Google Scholar 

  38. Sahar G, Hollerbach JM (1985) Planning of minimum-time trajectories for robot arms. In: Proceedings of IEEE international conference on robotics and automation (St. Louis, MO), March 1985, pp 751–758

    Google Scholar 

  39. Kamon I, Rimon E, Rivlin E (1998) Tangentbug: a range-sensor based navigation algorithm. Int J Robot Res 17(9):934–953

    Article  Google Scholar 

  40. Laubach S, Burdick J, Matthies L (1998) A practical autonomous path-planner for the rocky7 prototype microrover. IEEE international conference on robotics and automation

    Google Scholar 

  41. Choset H, Burdick JW (1995) Sensor based planning, part ii: incremental construction of the generalized Voronoi graph. In: Proceedings of IEEE international conference on robotics and automation, ICRA’95, pp 1643–1649

    Google Scholar 

  42. Sankaranarayanan A, Vidyasagar M (1991) Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on worst case path lengths and a classification of algorithms. In: Proceedings of IEEE international conference on robotics and automation, ICRA’91, pp 1734–1941

    Google Scholar 

  43. Connoly CI, Burns JB, Weiss R (1991) Path planning using Laplace’s equation. In: IEEE conference on robotics and automation, Cincinnati, OH, vol 1, pp 102–2106

    Google Scholar 

  44. Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 1:65–78

    Google Scholar 

  45. Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans Robot Autom 8:501–518

    Article  Google Scholar 

  46. Jarvis R (1985) Collision-free trajectory planning using distance transforms. Trans Inst Eng Aust Mech Eng ME10(3):187–191

    Google Scholar 

  47. Athans M (1965) Optimal control: an introduction to the theory and it’s applications. Academic Press, New York

    Google Scholar 

  48. Cesari L (1983) Optimization—theory and applications: problems with ordinary differential equations. Springer, New York

    Book  MATH  Google Scholar 

  49. Moskalenko AI (1967) Bellman equations for optimal processes with constraints on the phase coordinates. Autom Remote Control 4:1853–1864

    Google Scholar 

  50. Shiller Z, Sharma S, Stern I, Stern A (2013) On-line obstacle avoidance at high speeds. Int J Robot Res 32(9–10):1030–1047

    Article  Google Scholar 

  51. Sundar S, Shiller Z (1997) Optimal obstacle avoidance based on sufficient conditions of optimality. IEEE Trans Robot Autom 13(2):305–310

    Article  Google Scholar 

  52. Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New York

    MATH  Google Scholar 

  53. Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv Appl Math 11:412–442

    Article  MATH  MathSciNet  Google Scholar 

  54. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  55. Lawler EL (1976) Combinatorial optimization. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  56. Fujita Y, Nakamura Y, Shiller Z (2003) Dual dijkstra search for paths with different topologies. In: ICRA, pp 3359–3364

    Google Scholar 

  57. Shiller Z, Fujita Y, Ophir D, Nakamura Y (2004) Computing a set of local optimal paths through cluttered environments and over open terrain. In: ICRA, pp 4759–4764

    Google Scholar 

  58. Pham QC (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2357–2363

    Google Scholar 

  59. Dreyfus S (1965) Dynamic programming and the calculus of variations. Academic Press, New York

    MATH  Google Scholar 

  60. Sundar S (1995) Time-optimal obstacle avoidance for robotic manipulators. Doctoral Dissertation, Mechanical and Aerospace Engineering, University of California, Los Angeles, June 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Shiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shiller, Z. (2015). Off-Line and On-Line Trajectory Planning. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics