Skip to main content

A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking Patterns of Biped Robots

  • Chapter
  • First Online:
Motion and Operation Planning of Robotic Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

Minimum Jerk based control is part of optimal control laws. Its main contribution resides in the generation of smooth trajectories allowing the avoidance of sudden and abrupt motion. This chapter proposes the elaboration of appropriate control laws, with controller parameters computed offline, able to produce stable smooth and safe walking cycles for bipedal robots evolving in the three dimensional space. To alternate footsteps, Minimum Jerk and Impedance control principles are used to switch successively between single support, impact and double support phases. A new methodology of Minimum Jerk control is proposed to produce human like trajectories. Its originality mostly relies on the generation of Cartesian three-dimensional reference trajectories that do combine benefits of trigonometric and polynomial functions. When considering the impact and double support phases, an appropriate impedance control law is proposed to ensure the robot stability and safe balance during the contact with the ground. Simulation results performed on a 15 link/26 degrees of freedom Humanoid robot with a weight of 70 kg and a height of 1.73 m walking at a velocity of 0.6 m s\(^{-1}\), show that the dynamics of the robot during the swing phase are very attractive since smooth trajectories without dynamic vibrations are observed and a stable and safe elastic contact takes place while achieving the constrained phases even in presence of sensory noise and uncertainties on the environment stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone G, Ceccarelli M (2005) Legged robotic systems. Cutting edge robotics ARS scientific book. Wien, pp 553–576

    Google Scholar 

  2. Harada K, Yoshida E, Yokoi K (2010) Motion planning for humanoid robots. Springer, New York

    Book  MATH  Google Scholar 

  3. Harada K, Yoshida E, Yokoi K (2004) Motion planning for humanoid robots. Springer, New York

    Google Scholar 

  4. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans Ind Electron 47(1):140–149

    Article  Google Scholar 

  5. Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754

    Google Scholar 

  6. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    Google Scholar 

  7. Hogan N (1984) Adaptive control of mechanical impedance by co-activation of antagonist muscles. IEEE Trans Autom Control AC-29:681–690

    Google Scholar 

  8. Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings of the IEEE international conference on robotics and automation, pp 364–369

    Google Scholar 

  9. Simon D, Isik C (1991) Optimal trigonometric robot joint trajectories. Robotica 9(4):379–386

    Article  Google Scholar 

  10. Simon D (1993) The application of neural networks to optimal robot trajectory planning. Robot Auton Syst 11(1):23–34

    Article  Google Scholar 

  11. Doang Nguyen K, Ng TC, Chen IM (2008) On algorithms for planning S-curve motion profiles. Int J Adv Robot Syst 5:99–106

    Google Scholar 

  12. Amirabdollahian F, Loureiro R, Harwin W (2002) Minimum jerk trajectory control for rehabilitation and haptic applications. In: Proceedings of the IEEE international conference on robotics and automation, pp 3380–3385

    Google Scholar 

  13. Alfredo R, Riosa O, Romero-Troncoso RJ, Herrera-Ruiza G, Castaneda-Miranda R (2009) FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction in servomotors. Robot Comput-Integr Manuf 25:379–392

    Article  Google Scholar 

  14. Flash T, Henis E (1991) Arm trajectory modification during reaching toward visual targets. J Cogn Neurosci 3(3):220–230 (1991)

    Google Scholar 

  15. Boonpratatong A, Malisuwan S, Degenaar P, Veeraklaew T (2008) A minimum-jerk design of active artificial foot. Mechatron Embed Syst Appl 10:443–448

    Google Scholar 

  16. Aloulou A, Boubaker O (2011) Minimum jerk-based control for a three dimensional bipedal robot. In: Jeschke S, Liuet H, Schilberg D (eds) Intelligent robotics and applications, Lecture notes in computer science. vol 7120. Springer, Heidelberg, pp 251–262

    Google Scholar 

  17. Sung C, Kagawa T, Uno Y (2013) Whole-body motion planning for humanoid robots by specifying via-points. Int J Adv Robot Syst 10:1

    Article  Google Scholar 

  18. Hogan N (1984) Impedance control: an approach to manipulation. American Control Conference, pp 304–313

    Google Scholar 

  19. Yoshikawa T (2000) Force control of robot manipulators. IEEE Int Conf Robot Autom 1:220–226

    Google Scholar 

  20. Arevalo JC, Garcia E (2012) Impedance control for legged robots: an insight into the concepts involved. IEEE Trans Syst, Man, Cybern, Part C: Appl Rev 42(6):1400–1411

    Article  Google Scholar 

  21. Park JH, Chung H (1999) Hybrid control for biped robots using impedance control and computed-torque control. IEEE Int Conf Robot Autom 2:1365–1370

    Google Scholar 

  22. Lim HO, Setiawan SA, Takanishi A (2004) Position-based impedance control of a biped humanoid robot. Adv Robot 18(4):415–435

    Article  Google Scholar 

  23. Carbone G, Lim HK, Takanishi A, Ceccarelli M (2006) Stiffness analysis of biped humanoid robot WABIAN-RIV. Mech Mach Theory 41(1):17–40

    Article  MATH  Google Scholar 

  24. Kwon O, Park JH (2009) Asymmetric trajectory generation and impedance control for running of biped robots. Auton Robot 26(1):47–78

    Article  Google Scholar 

  25. Mehdi H, Boubaker O (2011) Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation. Int J Soc Robot 4:107–119

    Article  Google Scholar 

  26. Katić DM, Rodić AD, Vukobratović MK (2008) Hybrid dynamic control algorithm for humanoid robots based on reinforcement learning. J Intell Robot Syst 51(1):3–30

    Article  Google Scholar 

  27. Darmana R (2004) Le Cycle de la Marche Normale. La lettre de l’Observatoire du mouvement, 11:2

    Google Scholar 

  28. Viton JM, Bensoussan L, de Bovis Milhe V, Collado H, Delarque A (2006) Marche Normale et Marche Pathologique, Faculté de Médecine, Université de la Méditerranée, Fédération de Médecine Physique et de Réadaptation, CHU Timone, Marseille

    Google Scholar 

  29. Hemami H, Zheng YF (1984) Dynamics and control of motion on the ground and in the air with application to biped robots. J Robot Syst 1(1):101–116

    Article  Google Scholar 

  30. Chemori A, Alamir M (2004) Multi-step limit cycle generation for rabbit’s walking based on a nonlinear low dimensional predictive control scheme. Mechatronics 16(5):259–277

    Article  Google Scholar 

  31. Cho BK, Park IW, Oh JH (2009) Running pattern generation of humanoid biped with a fixed point and its realization. Int J Humanoid Robot 6(4):631–656

    Article  Google Scholar 

  32. Westervelt ER, Grizzle JW, Koditschek DE (2003) Hybrid zero dynamics of planar biped walkers. IEEE Trans Autom Control 48(1):42–56

    Article  MathSciNet  Google Scholar 

  33. Hemami H, Utkin VI (2002) On the dynamics and Lyapunov stability of constrained and embedded rigid bodies. Int J Control 75(6):408–420

    Article  MATH  MathSciNet  Google Scholar 

  34. Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT Press, Cambridge

    Google Scholar 

  35. Gasparetto A, Zanotto V (2010) Optimal trajectory planning for industrial robots. J Adv Eng Softw 41(4):548–556

    Article  MATH  Google Scholar 

  36. Morimoto J, Atkeson CG (2007) Learning biped locomotion: application of Poincaré-map-based reinforcement learning. IEEE Robot Autom Mag 14(2):41–51

    Article  Google Scholar 

  37. Miyamoto H, Morimoto J, Doya K, Kawato M (2004) Reinforcement learning with via-point representation. Neural Netw 17:299–305

    Article  MATH  Google Scholar 

  38. Piazzi A, Visioli A (1997) An interval algorithm for minimum-jerk trajectory planning of robot manipulators. Conference on Decision and Control, vol 2, pp 1924–1927

    Google Scholar 

  39. Saimpont A, Malouin F, Tousignant B, Jackson PL (2012) The influence of body configuration on motor imagery of walking in younger and older adults. Neuroscience 222(11):49–57

    Article  Google Scholar 

  40. Arous Y, Boubaker O (2012) Gait trajectory generation for a five link bipedal robot based on a reduced dynamical model. 16th IEEE mediterranean electro-technical conference, Yasmine Hammamet

    Google Scholar 

  41. Aloulou A, Boubaker O (2010) Control of a step walking combined to arms swinging for a three dimensional humanoid prototype. J Comput Sci 6(8):886–895

    Article  Google Scholar 

  42. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New York

    Book  Google Scholar 

  43. Hemami H (1982) Some aspects of Euler-Newton equations of motion. Arch Appl Mech 52(3–4):167–176

    Google Scholar 

  44. Shoushtari AL, Abedi P (2012) Realistic dynamic posture prediction of humanoid robot: manual lifting task simulation. Lect Notes Comput Sci 7506:565–578

    Article  Google Scholar 

  45. Atkeson CG, Hale JG, Riley M, Kotosaka S, Schaul S, Shibata T, Tevatia G, Ude A, Vijayakumar S, Kawato E, Kawato M (2000) Using humanoid robots to study human behavior. J Intell Syst Appl 15(4):46–56

    Article  Google Scholar 

  46. Aloulou A, Boubaker O (2013) Model validation of a humanoid robot via standard scenarios. 14th international conference on sciences and techniques of automatic control and computer engineering, Sousse, Tunisia

    Google Scholar 

  47. Aloulou A, Boubaker O (2012) A relevant reduction method for dynamic modeling of a seven-linked humanoid robot in the three-dimensional space. Procedia Eng 41:1277–1284

    Article  Google Scholar 

  48. Castley D, Oh P (2011) Development and application of a gel actuator for the design of a humanoid robotic finger. IEEE conference on technologies for practical robot applications, pp 105–108

    Google Scholar 

  49. http://world.honda.com/ASIMO/technology/2011/specification

  50. Park JH (2001) Impedance control for biped robot locomotion. IEEE Trans Robot Autom 17(6):870–882

    Article  Google Scholar 

  51. Mehdi H, Boubaker O (2011) Impedance controller tuned by particle swarm optimization for robotic arms. Int J Adv Robot Syst 8:93–103

    Google Scholar 

  52. Echávarri J, Ceccarelli M, Carbone G, Alén C, Muñoz JL, Díaz A, Munoz-Guijosa JM (2013) Towards a safety index for assessing head injury potential in service robotics. Adv Robot 61:1–14

    Google Scholar 

  53. Khan SG, Herrmann G, Pipe T, Melhuish C, Spiers A (2010) Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. Int J Soc Robot 2:305–319

    Article  Google Scholar 

  54. Mehdi H, Boubaker O (2012) New robust tracking control for safe constrained robots under unknown impedance environment. Lect Notes Comput Sci 7429:313–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Boubaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aloulou, A., Boubaker, O. (2015). A Minimum Jerk-Impedance Controller for Planning Stable and Safe Walking Patterns of Biped Robots. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics