Skip to main content

Principles of Dough Formation

  • Chapter
  • First Online:
Technology of Breadmaking

Abstract

The underlying chemical and physical changes which occur wheat flour dough is formed are detailed. The role of the individual flour components in dough formation are highlighted with particular focus on the gliadin and gluten fractions of wheat flour. The stages of dough and gluten formation during mixing are described and the rheological behaviour of the dough considered. The nature of the bonds which form in wheat flour dough are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend, T. (1995). Der mechanismus der teigbildung: Vorstoß in den molekularen strukturbereich. Getreide, Mehl und Brot, 49, 359–362.

    Google Scholar 

  • Amend, T., & Belitz, H.-D. (1990). The formation of dough and gluten – a study by scanning electron microscopy. Zeitschrift für Lebensmittel Untersuchung und-Forschungen, 190, 401–409.

    Article  CAS  Google Scholar 

  • Bailey, C. H. (1941). A translation of Beccari’s lecture ‘concerning grain’ (1729). Cereal Chemistry, 18, 555–561.

    CAS  Google Scholar 

  • Baker, J. C., & Mize, M. D. (1941). The origin of the gas cell in bread dough. Cereal Chemistry, 18, 19–34.

    CAS  Google Scholar 

  • Beckwith, A. C., Wall, J. S., & Dimler, R. J. (1963). Amide groups as interaction sites in wheat gluten proteins: Effects of amide–ester conversion. Archives of Biochemistry and Biophysics, 103, 319–330.

    Article  CAS  Google Scholar 

  • Belton, P. (1999). On the elasticity of gluten. Journal of Cereal Science, 29, 103–107.

    Article  CAS  Google Scholar 

  • Belton, P. S. (2012). The molecular basis of dough rheology. In S. P. Cauvain (Ed.), Breadmaking: Improving quality (2nd ed., pp. 337–351). Cambridge, UK: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Bernardin, J. E., & Kasarda, D. D. (1973). Hydrated protein fibrils from wheat endosperm. Cereal Chemistry, 50, 529–536.

    CAS  Google Scholar 

  • Bloksma, A. H. (1990a). Rheology of the breadmaking process. Cereal Foods World, 35, 228–236.

    Google Scholar 

  • Bloksma, A. H. (1990b). Dough structure, dough rheology, and baking quality. Cereal Foods World, 35, 237–244.

    Google Scholar 

  • Bloksma, A. H., & Bushuk, W. (1988). Rheology and chemistry of dough. In Y. Pomeranz (Ed.), Wheat chemistry and technology (3rd ed., pp. 131–217). St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Bloksma, A. H., & Nieman, W. (1975). The effect of temperature on some rheological properties of wheat flour doughs. Journal of Texture Studies, 6, 343–361.

    Article  Google Scholar 

  • Bushuk, W. (1966). Distribution of water in dough and bread. Baker’s Digest, 40(5), 38–40.

    Google Scholar 

  • Bushuk, W. (1985). Flour proteins: Structure and functionality in dough and bread. Cereal Foods World, 30, 447–451.

    CAS  Google Scholar 

  • Cauvain, S. P. (2009). Applications of testing methods in flour mills. In S. P. Cauvain & L. S. Young (Eds.), The ICC handbook of cereals, flour, dough & product testing: Methods and applications (pp. 91–124). Lancaster, PA: DEStech Publications Inc.

    Google Scholar 

  • Cauvain, S. P. (2012a). Breadmaking: Improving quality (2nd ed.). Cambridge, UK: Woodhead Publishing Ltd.

    Google Scholar 

  • Cauvain, S. P. (2012b). Assessing bakery functionality. The world of food ingredients, April/May, 10–12.

    Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2001). Baking problems solved. Cambridge, UK: Woodhead Publishing Ltd.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2008). Bakery food manufacture and quality: Water control and effects (2nd ed.). Oxford, UK: Wiley-Blackwell.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2009). The ICC handbook of cereals, flour, dough & product testing: Methods and applications. Lancaster, PA: DEStech Publications Inc.

    Google Scholar 

  • Chamberlain, N., & Collins, T. H. (1979). The Chorleywood bread process: the role of oxygen and nitrogen. Baker’s Digest, 53(1), 18–24.

    Google Scholar 

  • Chung, O. K. (1986). Lipid–protein interactions in wheat flour, dough, gluten, and protein fractions. Cereal Foods World, 31, 242–256.

    CAS  Google Scholar 

  • Chung, O. K., & Pomeranz, Y. (1979). Acid-soluble proteins of wheat flours. II. Binding to hydrophobic gels. Cereal Chemistry, 56, 196–201.

    CAS  Google Scholar 

  • Chung, O. K., Pomeranz, Y., & Finney, K. F. (1978). Wheat flour lipids in breadmaking. Cereal Chemistry, 55, 598–618.

    CAS  Google Scholar 

  • Daniels, N. W. R., Wendy-Richmond, J., Russell-Eggitt, P. W., & Coppock, J. B. M. (1976). Studies on the lipids of flour. III. Lipid binding in breadmaking. Journal of the Science of Food and Agriculture, 17, 20–29.

    Article  Google Scholar 

  • Danno, G., & Hoseney, R. C. (1982). Effects of dough mixing and rheologically active compounds on relative viscosity of wheat proteins. Cereal Chemistry, 59, 196–198.

    Google Scholar 

  • DeStefanis, V. A., Ponte, J. G., Jr., Chung, F. H., & Ruzza, N. A. (1977). Binding of crumb softeners and dough strengtheners during breadmaking. Cereal Chemistry, 54, 13–24.

    CAS  Google Scholar 

  • Dronzek, B., & Bushuk, W. (1968). A note on the formation of free radicals in dough during mixing. Cereal Chemistry, 45, 286.

    CAS  Google Scholar 

  • Eliasson, A.-C., & Larsson, K. (1993). Cereals in breadmaking – a molecular colloidal approach. New York, NY: Marcel Dekker.

    Google Scholar 

  • Ewart, J. A. D. (1968). A hypothesis for the structure and rheology of glutenin. Journal of the Science of Food and Agriculture, 19, 617–623.

    Article  CAS  Google Scholar 

  • Ewart, J. A. D. (1977). Re-examination of the linear gluten hypothesis. Journal of the Science of Food and Agriculture, 28, 191–199.

    Article  CAS  Google Scholar 

  • Faridi, H., & Faubion, J. M. (Eds.). (1990). Dough rheology and baked product texture. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Gao, L., Ng, P. K. W., & Bushuk, W. (1992). Structure of glutenin based on farinograph and electrophoretic results. Cereal Chemistry, 69, 452–455.

    CAS  Google Scholar 

  • Geissman, T., & Neukom, H. (1973). On the composition of the water-soluble wheat flour pentosans and their oxidative gelation. Lebensmittel Wissenschaft und Technologie, 6, 59–62.

    Google Scholar 

  • Goldstein, S. (1957). Sulfhydryl und Disulfidgruppen der Klebereiweisse und ihre Bezeihung zur Backfähigkeit der Brotmehle. Mitteilungen Gebiete Lebensmittel und Hygiene (Bern), 48, 87–93.

    CAS  Google Scholar 

  • Graveland, A., Bosveld, P., Lichtendonk, W. J., et al. (1985). A model for the molecular structure of the glutenin of wheat flour. Journal of Cereal Science, 3, 1–16.

    Article  CAS  Google Scholar 

  • Greenwood, C. T. (1976). Starch. In Y. Pomeranz (Ed.), Advances in cereal science and technology (American Association of Cereal Chemists, Vol. I, pp. 119–57). MN: St Paul.

    Google Scholar 

  • Greer, E. N., & Steward, B. A. (1959). The water absorption of wheat flour: Relative effects of protein and starch. Journal of the Science of Food and Agriculture, 10, 248–252.

    Article  CAS  Google Scholar 

  • Grosskreutz, J. C. (1961). A lipoprotein model of wheat gluten structure. Cereal Chemistry, 38, 336–349.

    CAS  Google Scholar 

  • Hibberd, G. E., & Parker, N. S. (1979). Nonlinear creep and recovery curve of wheat-flour doughs. Cereal Chemistry, 56, 232–236.

    Google Scholar 

  • Holmes, J. T., & Hoseney, R. C. (1987). Chemical leavening: effect of pH and certain ions on bread-making properties. Cereal Chemistry, 64, 343–348.

    CAS  Google Scholar 

  • Hoseney, R. C. (1976). Dough forming properties. Journal of the American Oil Chemists Society, 56, 78A–81A.

    Article  Google Scholar 

  • Hoseney, R. C. (1985). The mixing phenomenon. Cereal Foods World, 30, 453–457.

    Google Scholar 

  • Hoseney, R. C., & Faubion, J. M. (1981). A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chemistry, 58, 421–424.

    CAS  Google Scholar 

  • Hoseney, R. C., & Rogers, D. E. (1990). The formation and properties of wheat flour doughs. Critical Reviews in Food Science and Nutrition, 29, 73–93.

    Article  CAS  Google Scholar 

  • Jones, I. K., Phillips, J. W., & Hird, F. J. R. (1974). The estimation of rheologically important thiol and disulphide groups in dough. Journal of the Science of Food and Agriculture, 25, 1–10.

    Article  CAS  Google Scholar 

  • Junge, R. C., Hoseney, R. C., & Varriano-Marston, E. (1981). Effect of surfactants on air incorporation in dough and the crumb grain of bread. Cereal Chemistry, 58, 338–342.

    CAS  Google Scholar 

  • Kaczkowski, J., Kos, S., & Pior, H. (1990). Gliadin hydrophobicity and breadmaking potential. In W. Bushuk & R. Tkachuk (Eds.), Gluten proteins 1990 (pp. 66–70). St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Kasarda, D. D. (1989). Glutenin structure in relation to wheat quality. In Y. Pomeranz (Ed.), Wheat is unique (pp. 277–302). St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Kim, S. K., & D’Appolonia, B. L. (1977). Bread staling studies. III. Effect of pentosans on dough, bread, and bread staling rate. Cereal Chemistry, 54, 225–229.

    CAS  Google Scholar 

  • Kinsella, J. E., & Hale, M. L. (1984). Hydrophobic associations and gluten consistency: Effect of specific anions. Journal of Agricultural and Food Chemistry, 32, 1054–1056.

    Article  CAS  Google Scholar 

  • Kornbrust, B. A., Forman, T., & Matveeva, I. (2012). Application of enzymes in baking. In S. P. Cauvain (Ed.), Breadmaking: Improving quality (2nd ed., pp. 470–498). Cambridge, UK: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Menjivar, J. A. (1993). Fundamental aspects of dough rheology. In H. Faridi & J. M. Faubion (Eds.), Dough rheology and baked product texture. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Meredith, P. (1964). A theory of gluten structure. Cereal Science Today, 9(33), 33–34, 54.

    CAS  Google Scholar 

  • Michniewicz, J., Biliaderis, C. G., & Bushuk, W. (1990). Water-insoluble pentosans of wheat: composition and some physical properties. Cereal Chemistry, 67, 434–439.

    CAS  Google Scholar 

  • Millar, S. J., Bar L’Helgouac’h, C., Massin, C., & Alava, J. M. (2005). Flour quality and dough development interactions – the critical first steps in bread production. In S. P. Cauvain, S. E. Salmon, & L. S. Young (Eds.), Using cereal science and technology for the benefit of consumers (pp. 132–136). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Millar, S. J., & Tucker, G. (2012). Controlling dough development. In S. P. Cauvain (Ed.), Breadmaking: Improving quality (2nd ed., pp. 400–429). Cambridge: Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Neukom, H., & Markwalder, H. U. (1978). Oxidative gelation of wheat flour pentosans: a new way of cross-linking polymers. Cereal Foods World, 23, 374–376.

    Google Scholar 

  • Orth, R. A., & Bushuk, W. (1972). A comparative study of the proteins of wheats of diverse baking qualities. Cereal Chemistry, 49, 268–275.

    CAS  Google Scholar 

  • Osborne, T. B. (1907). The proteins of the wheat kernel. Washington, DC: Carnegie Institute of Washington.

    Book  Google Scholar 

  • Patil, S. K., Finney, K. F., Shogren, M. D., & Tsen, C. C. (1976). Water-soluble pentosans of wheat flour. III. Effect of water-soluble pentosans on loaf volume of reconstituted gluten and starch doughs. Cereal Chemistry, 53, 347–354.

    CAS  Google Scholar 

  • Pomeranz, Y. (1985). Wheat flour lipids – what they can and cannot do in bread. Cereal Foods World, 30, 443–446.

    CAS  Google Scholar 

  • Pyler, E. J. (1988). Baking science and technology. Kansas City, MO: Sosland Publishing Co.. Chapter 14.

    Google Scholar 

  • Rasper, V. F. (1975). Dough rheology at large deformations in simple tensile mode. Cereal Chemistry, 52, 24r–41r.

    Google Scholar 

  • Redman, D. G., Axford, D. W. E., Elton, G. A. H. (1966). Mechanically produced radicals in flour. Chemistry and Industry, 1298–9.

    Google Scholar 

  • Salovaara, H. (1982). Effect of partial sodium chloride replacement by potassium chloride or some other salts on wheat dough rheology and breadmaking. Cereal Chemistry, 59, 422–426.

    CAS  Google Scholar 

  • Schroeder, L. F., & Hoseney, R. C. (1978). Mixograph studies. II. Effect of activated double-bond compounds on dough-mixing properties. Cereal Chemistry, 55, 348–360.

    CAS  Google Scholar 

  • Sidhu, J. S., Hoseney, R. C., Faubion, J., & Nordin, P. (1980). Reaction of 14C-cysteine with wheat flour water solubles under ultraviolet light. Cereal Chemistry, 57, 380–382.

    CAS  Google Scholar 

  • Sidhu, J. S., Nordin, P., & Hoseney, R. C. (1980). Mixograph studies. III. Reaction of fumaric acid with gluten proteins during dough mixing. Cereal Chemistry, 57, 159–163.

    CAS  Google Scholar 

  • Singh, N. K., Donovan, R., & MacRitchie, F. (1990). Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour proteins. II. Relative quantity of glutenin as a measure of breadmaking quality. Cereal Chemistry, 67, 161–170.

    CAS  Google Scholar 

  • Slade, L., Levine, H., & Finley, J. W. (1989). Protein-water interactions: Water as a plasticizer of gluten and other protein polymers. In R. D. Phillips & J. W. Finley (Eds.), Protein quality and the effects of processing (pp. 9–124). New York: Marcel Dekker.

    Google Scholar 

  • Stauffer, C. E. (1990). Functional additives for bakery foods. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Tanford, C. (1973). The hydrophobic effect. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Tatham, A. S., Miflin, B. J., & Shewry, P. R. (1985). The beta-turn conformation in wheat gluten proteins: Relationship to gluten elasticity. Cereal Chemistry, 62, 405–412.

    CAS  Google Scholar 

  • Tilley, K. A., Benjamin, R. E., Bagorogoza, K., Moses Okot-Kotber, B., Prakash, O., & Kwen, H. (2001). Tyrosine crosslinks: Molecular basis of gluten structure and function. Journal of Agricultural and Food Chemistry, 49, 2627–2632.

    Article  CAS  Google Scholar 

  • Tilley, M., & Tilley, K. A. (2005). Modifying tyrosine crosslink formation in wheat dough by controlling innate enzymic activity. In S. P. Cauavin, S. E. Salmon, & L. S. Young (Eds.), Using cerealsscience and technology for the benefit of consumers (pp. 142–146). Cambridge: Woodhead publishing Ltd.

    Chapter  Google Scholar 

  • Tipples, K. H., & Kilborn, R. H. (1975). ‘Unmixing’ – the disorientation of developed bread doughs by slow speed mixing. Cereal Chemistry, 52, 248–262.

    Google Scholar 

  • Tipples, K. H., & Kilborn, R. H. (1977). Factors affecting mechanical dough development. V. Influence of rest period on mixing and ‘unmixing’ characteristics of dough. Cereal Chemistry, 54, 92–109.

    Google Scholar 

  • Tipples, K. H., Meredith, J. O., & Holas, J. (1978). Factors affecting farinograph and baking absorption. II. Relative influence of flour components. Cereal Chemistry, 55, 652–660.

    Google Scholar 

  • Tkachuk, R., & Hylynka, I. (1968). Some properties of dough and gluten in D2O. Cereal Chemistry, 45, 80–87.

    CAS  Google Scholar 

  • van Lonkhuijsen, H. J., Hamer, R. J., & Schreuder, C. (1992). Influence of specific gliadins on the breadmaking quality of wheat. Cereal Chemistry, 69, 174–177.

    Google Scholar 

  • Weegels, P. L., Marseille, J. P., de Jasger, A. M., & Hamer, R. J. (1990). Structure–function relationships of gluten proteins. In W. Bushuk & R. Tkachuk (Eds.), Gluten proteins 1990 (pp. 98–111). St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Wehrli, H. P., & Pomeranz, Y. (1969). The role of chemical bonds in dough. Baker’s Digest, 43(6), 22–26.

    CAS  Google Scholar 

  • Wilde, P. (2012). Foam formation in dough and bread quality. In S. P. Cauvain (Ed.), Breadmaking: Improving quality (2nd ed., pp. 370–399). Cambridge, UK: Woodhead Publsihing Ltd.

    Chapter  Google Scholar 

  • Wootton, M. (1976). Binding and extractability of wheat flour lipid after dough formation. Journal of the Science of Food and Agriculture, 17, 297–301.

    Article  Google Scholar 

  • Wrigley, C. W., Andrews, J. L., Bekes, F., Gras, P. W., Gupta, R. B., Macrithies, F., et al. (1998). Protein-protein interactions – essential to dough rheology. In R. J. Hamer & R. C. Hoseney (Eds.), Interactions; keys to cereal quality (pp. 17–46). St. Paul, MN: American Association of Cereal Quality.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cauvain, S. (2015). Principles of Dough Formation. In: Technology of Breadmaking. Springer, Cham. https://doi.org/10.1007/978-3-319-14687-4_11

Download citation

Publish with us

Policies and ethics