Skip to main content

Abstract

Nowadays, Computational Fluid Dynamics (CFD) is a widely used method for the analysis and the design of gas turbines. The accuracy of CFD is rapidly increasing thanks to the available computational resources that allow simulating high-speed flows using hi-fidelity methodologies. However CFD uses models, and several approximations and errors derive from the process, for example from the truncation errors due to the discretization of the Navier-Stokes equations and from the turbulence models. Typical examples of such kind of limitations may be the steady flow assumption, the turbulence closure or the mesh resolution. The impact of approximations could be minimum to evaluate the trends of variation of global parameters, but it will have a strong impact on the prediction of local values of important parameters such as flow temperature and heat transfer. It is worth highlighting that the available computational resources are pushing towards the so called high fidelity CFD and it is important to highlight what is needed to achieve this goal and to reduce the impact of approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salvadori, S., Montomoli, F., Martelli, F., Chana, K. S., Qureshi, I., & Povey, T. (2012). Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages. Journal of Turbomachinery, 134(1), 011012-1-14. doi:10.1115/1.4003233.

  2. Insinna, M., Griffini, D., Salvadori, S., & Martelli, F. (2014). Conjugate heat transfer analysis of a film cooled high-pressure turbine vane under realistic combustor exit flow conditions. In Proceedings of the ASME Turbo Expo 2014, Volume 5A: Heat Transfer, Dusseldorf, Germany, June 16–20, pp. V05AT11A007 (14 pages). doi:10.1115/GT2014-25280.

  3. Pau, M., Paniagua, G., Delhaye, D., de la Loma, A., & Ginibre, P. (2010). Aerothermal impact of stator-rim purge flow and rotor-platform film cooling on a transonic turbine stage. Journal of Turbomachinery, 132(2), 021006-1-12. doi:10.1115/1.3142859.

  4. Bernardini, C., Carnevale, M., Manna, M., Martelli, F., Simoni, D., Zunino, P. (2012). Turbine blade boundary layer separation suppression via synthetic jet: An experimental and numerical study. Journal of Thermal Science 21(5):404–412. doi:10.1007/s11630-012-0561-2

  5. Medic, G., Kalitzin, G., You, D., van der Weide, E., Alonso, J. J., & Pitschk, H. (2007). Integrated RANS/LES computations of an entire gas turbine jet engine. In 45th AIAA Aerospace Sciences Meeting and Exhibit, January 8–11, 2007/Reno, NV, AIAA 2007-1117.

    Google Scholar 

  6. Adami, P., Martelli, F., & Cecchi, S. (2007). Analysis of the shroud leakage flow and mainflow interactions in high-pressure turbines using an unsteady computational fluid dynamics approach. Proceedings of the IMechE Part A: Journal of Power and Energy, 21. doi:10.1243/09576509JPE466.

  7. Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty in turbomachinery: Tip gap and fillet radius. Elsevier Computers and Fluids, 46(1), 362–368. doi:10.1016/j.compfluid.2010.11.031.

    Article  MATH  Google Scholar 

  8. Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, 116(3), 405–413. doi:10.1115/1.2910291.

    Article  Google Scholar 

  9. Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123–160. doi:10.1146/annurev.fluid.29.1.123.

    Article  MathSciNet  Google Scholar 

  10. Roache, P. J. (1998). Verification of codes and calculations. AIAA Journal, 36, 696–702. doi:10.2514/2.457.

    Article  Google Scholar 

  11. Celik, I. (1993). Numerical uncertainty in fluid flow calculations: Needs for future research. Journal of Fluids Engineering, 115, 194–195. doi:10.1115/1.2910123.

    Article  Google Scholar 

  12. Roache, P. J., Kirti, N. G., & White, F. M. (1986). Editorial policy statement on the control of numerical accuracy. Journal of Fluids Engineering, 108, 2. doi:10.1115/1.3242537.

    Article  Google Scholar 

  13. Richardson, L. F. (1910). The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in the masonry dam. Transactions of the Royal Society of London, Series A, 210, 307–357. doi:10.1098/rsta.1911.0009.

    Article  Google Scholar 

  14. Richardson, L. F., & Gaunt, J. A. (1927). The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 226, 299–361. doi:10.1098/rsta.1927.0008.

    Article  MATH  Google Scholar 

  15. Saracoglu, B. H., Paniagua, G., & Salvadori, S. (2014). Energy analysis of pulsating coolant ejection. In ASME Turbo Expo 2014, Volume 2D: Turbomachinery, Dusseldorf, Germany, June 16–20, pp. V02DT44A016 (10 pages). doi:10.1115/GT2014-25868.

  16. He, L. (1996). VKI Lecture Series Part I: Modelling issues for computations of unsteady turbomachinery flows. VKI Lecture Series on “Unsteady Flows in Turbomachines”, Von Karman Institute for Fluid Dynamics.

    Google Scholar 

  17. He, L. (1996). VKI Lecture Series Part II: Time marching calculations for blade row interaction and flutter. VKI Lecture Series on “Unsteady Flows in Turbomachines”, Von Karman Institute for Fluid Dynamics.

    Google Scholar 

  18. Payne, S. J., Ainsworth, R. W., Miller, R. J., Moss, R. W., & Harvey, N. W. (2005). Unsteady loss in a high pressure turbine stage: Interaction effects. International Journal of Heat and Fluid Flow, 26, 695–708.

    Article  Google Scholar 

  19. Pullan, G. (2006). Secondary flows and loss caused by blade row interaction in a turbine stage. ASME Journal of Turbomachinery, 128(3), 484–491.

    Article  MathSciNet  Google Scholar 

  20. Butler, T. L., Sharma, O. P., Joslyn, H. D., & Dring, R. P. (1989). Redistribution of an inlet temperature distortion in an axial flow turbine stage. AIAA Journal of Propulsion and Power, 5, 64–71.

    Article  Google Scholar 

  21. Munk, M., & Prim, R. (1947). On the multiplicity of steady gas flows having the same streamline patterns. Proceedings of the National Academy of Science, 33, 137–141.

    Article  Google Scholar 

  22. Kerrebrock, J. L., & Mikolajczak, A. A. (1970). Intra-stator transport of rotor wakes and its effect on compressor performance. ASME Journal of Engineering for Power, 92(4), 359–368.

    Article  Google Scholar 

  23. Dorney, D. J., Davis, R. L., Edwards, D. E., & Madavan, N. K. (1992). Unsteady analysis of hot streak migration in a turbine stage. AIAA Journal of Propulsion and Power, 8(2), 520–529.

    Article  Google Scholar 

  24. Adamczyk, J. J., Mulac, R. A., & Celestina, M. L. (1986). A model for closing the inviscid form of the average-passage equation system. Transactions of the ASME, 108, 180–186.

    Google Scholar 

  25. Dorney, D. J., Davis, R. L., & Sharma, O. P. (1996). Unsteady multistage analysis using a loosely coupled blade row approach. AIAA Journal of Propulsion and Power, 12(2), 274–282.

    Article  Google Scholar 

  26. Rai, M. M., & Madavan, N. K. (1988). Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction. Reno: NASA Ames Research Centre.

    Google Scholar 

  27. Giles, M. B. (1988). Calculation of unsteady wake-rotor interaction. AIAA Journal of Propulsion and Power, 4(4), 356–362.

    Article  Google Scholar 

  28. Giles, M. B. (1990). Stator/rotor interaction in a transonic turbine. AIAA Journal of Propulsion and Power, 6(5), 621–627.

    Article  MathSciNet  Google Scholar 

  29. He, L. (1990). An Euler solution for unsteady flows around oscillating blades. ASME Journal of Turbomachinery, 112(4), 714–722.

    Article  Google Scholar 

  30. He, L. (1992). Method of simulating unsteady turbomachinery flows with multiple perturbations. AIAA Journal, 30(11), 2730–2735.

    Article  MATH  Google Scholar 

  31. Klapdor, E. V., di Mare, F., Kollmann, W., & Janicka, J. (2013). A compressible pressure-based solution algorithm for gas turbine combustion chambers using the PDF/FGM model. Flow, Turbulence and Combustion, 91(2), 209–247.

    Article  Google Scholar 

  32. Insinna, M., Salvadori, S., & Martelli, F. (2014). Simulation of combustor/NGV interaction using coupled RANS solvers: Validation and application to a realistic test case. In Proceedings of the ASME Turbo Expo 2014, Volume 2D: Turbomachinery, Dusseldorf, Germany, June 16–20, pp. V02CT38A010 (12 pages). doi:10.1115/GT2014-25433.

  33. Kim, S., Schluter, J. U., Wu, X., Alonso, J. J, & Pitsch, H. (2004). Integrated simulations for multi-component analysis of gas turbines: RANS boundary conditions. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2004-3415.

    Google Scholar 

  34. Medic, G., Kalitzin, G., You, D., Herrmann, M., Ham, F., van der Weide, E., et al. (2006). Integrated RANS/LES computations of turbulent flow through a turbofan jet engine. Annual Research Brief, Center for Turbulence Research, University of Stanford.

    Google Scholar 

  35. Collado Morata, E. (2012). Impact of the unsteady aerothermal environment on the turbine blades temperature. Ph.D. thesis, Université de Toulouse.

    Google Scholar 

  36. Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. ASME Journal of Turbomachinery, 131, 041018-1-11. doi:10.1115/1.3072494.

    Article  Google Scholar 

  37. Montomoli, F., Massini, M., Salvadori, S., & Martelli, F. (2012). Geometrical uncertainty and film cooling fillet radii. ASME Journal of Turbomachinery, 134(1), 011019-1-8. doi:10.1115/1.4003287.

  38. Carnevale, M., Salvadori, S., Manna, M., & Martelli, F. (2013). A comparative study of RANS, URANS and NLES approaches for flow prediction in pin fin array. In Proceedings of the ETC Conference, 10th European Turbomachinery Conference, 15–19 April 2013, Lappeenranta, Finland, pp. 928–937, Paper No. ETC2013-111.

    Google Scholar 

  39. Carnevale, M., Montomoli, F., D’Ammaro, A., Salvadori, S., & Martelli, F. (2013). Uncertainty quantification: a stochastic method for heat transfer prediction using les. ASME Journal of Turbomachinery, 135(5), 051021-1-8. doi:10.1115/1.4007836.

  40. Adami, P., Martelli, F., Chana, K. S., & Montomoli, F. (2003). Numerical predictions of film cooled NGV blades. In Proceedings of IGTI, ASME Turbo Expo 2003, June 16–19, Atlanta, Georgia, USA, Paper No. GT-2003-38861.

    Google Scholar 

  41. Montomoli, F., Adami, P., Della Gatta, S., & Martelli, F. (2004). Conjugate heat transfer modelling in film cooled blades. In Proceedings of IGTI, ASME Turbo Expo 2004, June 14–17, Vienna, Austria, Paper No. GT-2004-53177.

    Google Scholar 

  42. Takahashi, T., Funazaki, K., Salleh, H. B., Sakai, E., & Watanabe, K. (2012). Assessment of URANS and DES for prediction of leading edge film cooling. Journal of Turbomachinery, 134, 031008-1-10.

    Article  Google Scholar 

  43. Luo, J., & Razinsky, E. H. (2007). Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model. Journal of Turbomachinery, 129(4), 773–781.

    Article  Google Scholar 

  44. Lien, F. S., & Kalitzin, G. (2001). Computations of transonic flow with the υ2-f turbulence model. International Journal of Heat and Fluid Flow, 22(1), 53–61.

    Article  Google Scholar 

  45. Walters, D. K., & Cokljat, D. (2008) A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. Journal of Fluids Engineering, 130(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Montomoli .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Montomoli, F., Carnevale, M., D’Ammaro, A., Massini, M., Salvadori, S. (2015). Limitations in Turbomachinery CFD. In: Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14681-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14681-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14680-5

  • Online ISBN: 978-3-319-14681-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics