Skip to main content

Manifold Learning for Cardiac Modeling and Estimation Framework

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges (STACOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8896))

Abstract

In this work we apply manifold learning to biophysical modeling of cardiac contraction with the aim of estimating material parameters characterizing myocardial stiffness and contractility. The set of cardiac cycle simulations spanning the parameter space of myocardial stiffness and contractility is used to create a manifold structure based on the motion pattern of the left ventricle endocardial surfaces. First, we assess the proposed method by using synthetic data generated by the model specifically to test our approach with the known ground truth parameter values. Then, we apply the method on cardiac magnetic resonance imaging (MRI) data of two healthy volunteers. The post-processed cine MRI for each volunteer were embedded into the manifold together with the simulated samples and the global parameters of contractility and stiffness for the whole myocardium were estimated. Then, we used these parameters as an initialization into an estimator of regional contractilities based on a reduced order unscented Kalman filter. The global values of stiffness and contractility obtained by manifold learning corrected the model in comparison to a standard model calibration by generic parameters, and a significantly more accurate estimation of regional contractilities was reached when using the initialization given by manifold learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aljabar, P., Wolz, R., Rueckert, D.: Manifold learning for medical image registration, segmentation, and classification. In: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global (2012)

    Google Scholar 

  2. Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computat. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Bhatia, K.K., Rao, A., Price, A.N., Wolz, R., Hajnal, J.V., Rueckert, D.: Hierarchical manifold learning for regional image analysis. IEEE TMI 33(2), 444–461 (2014)

    Google Scholar 

  5. Caruel, M., Chabiniok, R., Moireau, P., Lecarpentier, Y., Chapelle, D.: Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol 13(4), 897–914 (2014)

    Article  Google Scholar 

  6. Chabiniok, R., Chapelle, D., Lesault, P.-F., Rahmouni, A., Deux, J.-F.: Validation of a biomechanical heart model using animal data with acute myocardial infarction. In: CI2BM09 - MICCAI Workshop, London, UK (2009)

    Google Scholar 

  7. Chabiniok, R., Moireau, P., Lesault, P.-F., Rahmouni, A., Deux, J.-F., Chapelle, D.: Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5), 609–30 (2012)

    Article  Google Scholar 

  8. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatible discretizations. International Journal for Multiscale Computational Engineering 10(2), 189–211 (2012)

    Article  Google Scholar 

  9. Frey, P.J., George, P.-L.: Mesh generation application to finite elements. Wiley, London (2008)

    MATH  Google Scholar 

  10. Le Folgoc, L., Delingette, H., Criminisi, A., Ayache, N.: Current-based 4D shape analysis for the mechanical personalization of heart models. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 283–292. Springer, Heidelberg (2013)

    Google Scholar 

  11. Marchesseau, S., Delingette, H., Sermesant, M., Ayache, N.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model Mechanobiol. 12(5), 815–831 (2013)

    Article  Google Scholar 

  12. Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, A.C., Gerbeau, J.-F.: External tissue support and fluid-structure simulation in blood flows. Biomech. Model Mechanobiol. 11(1–2), 1–18 (2012)

    Article  Google Scholar 

  13. Perry, T.E., Zha, H., Zhou, K., Frias, P., Zeng, D., Braunstein, M.: Supervised embedding of textual predictors with applications in clinical diagnostics for paediatric cardiology. J. Am. Med. Inform. Assoc. 21, e136–e142 (2013)

    Article  Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  15. Rutz, A.K., Ryf, S., Plein, S., Boesiger, P., Kozerke, S.: Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 59, 755–763 (2008)

    Article  Google Scholar 

  16. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  17. Schnabel, J.A., et al.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 573. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat, J.M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette, H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., Ayache, N.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  19. Shi, W., Zhuang, X., Wang, H., Duckett, S., Luong, D.V.N., Tobon-Gomez, C., Tung, K., Edwards, P., Rhode, K., Razavi, R., Ourselin, S., Rueckert, D.: A comprehensive cardiac motion estimation framework using both untagged and 3D tagged MR images based on non-rigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012)

    Article  Google Scholar 

  20. Toussaint, N., Mansi, T., Delingette, H., Ayache, N., Sermesant, M.: An integrated platform for dynamic cardiac simulation and image processing: application to personalised tetralogy of Fallot simulation. In: Proc.of VCBM. Delft, NL (2008)

    Google Scholar 

  21. Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13(5), 773–784 (2009)

    Article  Google Scholar 

  22. Xi, J., Lamata, P., Lee, J., Moireau, P., Chapelle, D., Smith, N.: Myocardial transversely isotropic material parameter estimation from in-silico measurements based on reduced-order unscented Kalman filter. Journal of the Mechanical Behavior of Biomedical Materials 4(7), 1090–1102 (2011)

    Article  Google Scholar 

  23. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S., Shetty, A., Rinaldi, C., Rueckert, D., Razavi, R., Smith, N.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)

    Article  Google Scholar 

  24. Ye, D.H., Desjardins, B., Hamm, J., Litt, H., Pohl, K.M.: Regional manifold learning for disease classification. IEEE TMI 33(6), 1236–1247 (2014)

    Google Scholar 

  25. Zettinig, O., Mansi, T., Georgescu, B., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Steen, H., Meder, B., Katus, H., Navab, N., Kamen, A., Comaniciu, D.: Fast data-driven calibration of a cardiac electrophysiology model from images and ECG. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Zhang, Q., Souvenir, R., Pless, R.: On manifold structure of cardiac MRI data: application to segmentation. In: CVPR, pp. 1092–1098. IEEE Comp. Soc. (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomir Chabiniok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chabiniok, R., Bhatia, K.K., King, A.P., Rueckert, D., Smith, N. (2015). Manifold Learning for Cardiac Modeling and Estimation Framework. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14678-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14677-5

  • Online ISBN: 978-3-319-14678-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics