Skip to main content

Combustion Systems

  • Chapter
  • First Online:
Thermal Non-Equilibrium in Heterogeneous Media

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 488 Accesses

Abstract

Modeling of flows in inert porous media has attracted the attention of scientists and engineers worldwide and in the last decade a number of outstanding books, handbooks and edited books have been written on the subject [Pop I, Ingham DB, Convective heat transfer: mathematical and computational modeling of viscous fluids and porous media (2001)–Nield DA, Bejan A, Convection in porous media, 4th edn (2013)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pop I, Ingham DB (2001) Convective heat transfer: mathematical and computational modeling of viscous fluids and porous media. Pergamon, Oxford

    Google Scholar 

  2. Vafai K (ed) (2005) Handbook of porous media, 2nd edn. Taylor and Francis, New York

    Google Scholar 

  3. Ingham DB, Pop I (eds) (2005) Transport phenomena in porous media, vol 3. Elsevier, Oxford

    Google Scholar 

  4. Vadasz P (2008) Emerging topics in heat and mass transfer in porous media. Springer, New York

    Book  Google Scholar 

  5. Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  6. Vafai K (2010) Porous media: applications in biological systems and biotechnology. CRC Press, Tokyo

    Book  Google Scholar 

  7. Babkin VS (1993) Filtration combustion of gases—present state of affairs and prospects. Pure Appl Chem 65(2):335–344

    Article  Google Scholar 

  8. Mohamad AA, Ramadhyani S, Viskanta R (1994) Modeling of combustion and heat-transfer in a packed-bed with embedded coolant tubes. Int J Heat Mass Tran 37(8):1181–1191

    Article  MATH  Google Scholar 

  9. Howell JR, Hall MJ, Ellzey JL (1996) Combustion of hydrocarbon fuels within porous inert media. Prog Energ Combust 22(2):121–145

    Article  Google Scholar 

  10. Bouma PH, De Goey LPH (1999) Premixed combustion on ceramic foam burners. Combust Flame 119(1–2):133–143

    Article  Google Scholar 

  11. Henneke MR, Ellzey JL (1999) Modeling of filtration combustion in a packed bed. Combust Flame 117(4):832–840

    Article  Google Scholar 

  12. Oliveira AAM, Kaviany M (2001) Non equilibrium in the transport of heat and reactants in combustion in porous media. Prog Energ Combust 27(5):523–545

    Article  Google Scholar 

  13. Lammers FA, De Goey LPH (2003) A numerical study of flash back of laminar premixed flames in ceramic-foam surface burners. Combust Flame 133(1–2):47–61

    Article  Google Scholar 

  14. Leonardi SA, Viskanta R, Gore JP (2003) Analytical and experimental study of combustion and heat transfer in submerged flame metal fiber burners/heaters. J Heat Transf 125(1):118–125

    Article  Google Scholar 

  15. Wood S, Harries AT (2008) Porous burners for lean-burn applications. Prog Energ Combust 34:667–684

    Article  Google Scholar 

  16. Abdul Mujeebu M, Abdullah MZ, Abu Bakar MZ, Mohamad AA, Abdullaha MK (2009) A review of investigations on liquid fuel combustion in porous inert media. Prog Energ Combust 35:216–230

    Google Scholar 

  17. Hsu PF, Howell JR, Matthews RD (1993) A Numerical investigation of premixed combustion within porous inert media. J Heat Transf 115:744–750

    Article  Google Scholar 

  18. Peard TE, Peters JE, Brewster MQ, Buckius RO (1993) Radiative heat transfer augmentation in gas-fired radiant tube burner by porous inserts: effect on insert geometry. Exp Heat Transf 6:273–286

    Article  Google Scholar 

  19. Lim IG, Matthews RD (1993) Development of a model for turbulent combustion within porous inert media. In: Transport phenomena in thermal engineering. Begell House Inc Publications, New York, pp 631–636

    Google Scholar 

  20. Jones WP, Launder BE (1972) The prediction of laminarization with two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  21. Sahraoui M, Kaviany (1995) Direct simulation vs time-averaged treatment of adiabatic, premixed flame in a porous medium. Int J Heat Mass Transf 18:2817–2834

    MATH  Google Scholar 

  22. Pedras MHJ, de Lemos MJS (2001) Simulation of turbulent flow in porous media using a spatially periodic array and a low re two-equation closure. Numer Heat Transf—Part A Appl 39:35–59

    Google Scholar 

  23. Pedras MHJ, de Lemos MJS (2003) Computation of turbulent flow in porous media using a low reynolds k- model and an infinite array of transversally-displaced elliptic rods. Numer Heat Transf Part A—Appl 43(6):585–602

    Google Scholar 

  24. de Lemos MJS (2005) Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Int Commun Heat Mass 32(1–2):107–115

    Article  Google Scholar 

  25. Santos NB, de Lemos MJS (2006) Flow and heat transfer in a parallel plate channel with porous and solid baffles. Numer Heat Transf—Part A 49(5):471–494

    Google Scholar 

  26. Assato M, Pedras MHJ, de Lemos MJS (2005) Numerical solution of turbulent channel flow past a backward-facing step with a porous insert using linear and nonlinear k-models. J Porous Media 8(1):13–29

    Article  MATH  Google Scholar 

  27. Braga EJ, de Lemos MJS (2004) Turbulent natural convection in a porous square cavity computed with a macroscopic k-ε model. Int J Heat Mass Tran 47(26):5639–5650

    Article  MATH  Google Scholar 

  28. Kuznetsov AV, Cheng L, Xiong M (2002) Effects of thermal dispersion and turbulence in forced convection in a composite parallel-plate channel: Investigation of constant wall heat flux and constant wall temperature cases. Numer Heat Transf Part A-Appl 42:365–383

    Article  Google Scholar 

  29. Kuznetsov AV (2004) Numerical modeling of turbulent flow in a composite porous/fluid duct utilizing a two layer k-epsilon model to account for interface roughness. Int J Therm Sci 43:1047–1056

    Article  Google Scholar 

  30. de Lemos MJS (2009) Numerical simulation of turbulent combustion in porous materials. Int Commun Heat Mass Transf 36:996–1001

    Article  Google Scholar 

  31. de Lemos MJS (2010) Analysis of turbulent combustion in inert porous media. Int Commun Heat Mass Transf 37(4):331–336

    Article  Google Scholar 

  32. Coutinho JEA, de Lemos MJS (2012) Laminar flow with combustion in inert porous media. Int Commun Heat Mass Transf 39:896–903

    Article  Google Scholar 

  33. de Lemos MJS (2005) Fundamentals of the double—decomposition concept for turbulent transport in permeable media. Materialwiss Werkstofftech 36(10):586

    Article  Google Scholar 

  34. Saito M, de Lemos MJS (2005) Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. Int Commun Heat Mass 32(5):667–677

    Google Scholar 

  35. Saito M, de Lemos MJS (2006) A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods. J Heat Transf 128(5):444–452

    Article  Google Scholar 

  36. Slattery JC (1967) Flow of viscoelastic fluids through porous media. AICHE J 13:1066–1071

    Article  Google Scholar 

  37. Whitaker S (1969) Advances in theory of fluid motion in porous media. Ind Eng Chem 61:14–28

    Article  Google Scholar 

  38. Gray WG, Lee PCY (1977) On the theorems for local volume averaging of multiphase system. Int J Multiphase Flow 3:333–340

    Article  MATH  Google Scholar 

  39. Kuwahara F, Shirota M, Nakayama A (2001) A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media. Int J Heat Mass Transf 44:1153–1159

    Article  MATH  Google Scholar 

  40. Malico I, Pereira JCF (1999) Numerical predictions of porous burners with integrated heat exchanger for household applications. J Porous Media 2(2):153–162

    Article  MATH  Google Scholar 

  41. Mohamad AA, Viskanta R, Ramadhyani S (1994) Numerical prediction of combustion and heat transfer in a packed bed with embedded coolant tubes. Combust Sci Technol 96:387–407

    Article  MATH  Google Scholar 

  42. Kuo KK (1986) Principles of combustion. John Wiley and Sons, New York

    Google Scholar 

  43. Turns SR (1996) An introduction to combustion: concepts and applications. McGraw-Hill, New York

    Google Scholar 

  44. Trimis D, Durst F (1996) Combustion in a porous medium—advances and applications. Combust Sci Technol 121:153–168

    Article  Google Scholar 

  45. Patankar SV (1980) Numer Heat Transf and Fluid Flow. Hemisphere, Washington, DC

    Google Scholar 

  46. Pereira FM (2002) Medição de Características Térmicas e Estudo do Mecanismo de Estabilização de chama em Queimadores Porosos Radiantes, Federal de Santa Catarina (in Portuguese), Florianópolis, Brazil

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo J. S. de Lemos .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

de Lemos, M.J.S. (2016). Combustion Systems. In: Thermal Non-Equilibrium in Heterogeneous Media. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-14666-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14666-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14665-2

  • Online ISBN: 978-3-319-14666-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics