Skip to main content

Computational Multiscale Modeling of Nickel-Based Superalloys Containing Gamma-Gamma’ Precipitates

  • Chapter
  • First Online:
Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 57))

Abstract

A hierarchical crystal plasticity constitutive model, comprising three different scales for polycrystalline microstructures of Ni-based superalloys, is developed. Three scales, dominant in models of polycrystalline Ni-based superalloys, are: (i) the sub-grain scale of \(\gamma \)\(\gamma '\) microstructure, characterized by \(\gamma '\) precipitate size and their spacing; (ii) grain-scale characterized by the size of single crystals; and (iii) the scale of polycrystalline representative volume elements. A homogenized activation energy-based crystal plasticity (AE-CP) FEM model is developed for the grain-scale, accounting for characteristic parameters of the sub-grain scale \(\gamma \)\(\gamma '\) morphology. A significant advantage of this AE-CP model is that its high efficiency enables it to be effectively incorporated in polycrystalline crystal plasticity FE simulations, while retaining the accuracy of detailed sub-grain level representative volume element (SG-RVE) models. The SG-RVE models are created for variable morphology, e.g. volume fraction, precipitate shape and channel-widths. The sub-grain crystal plasticity model incorporates a dislocation density-based crystal plasticity model augmented with mechanisms of anti-phase boundary (APB) shearing of precipitates. The sub-grain model is homogenized for developing parametric functions of morphological variables in evolution laws of the AE-CP model. Micro-twinning initiation and evolution models are incorporated in the single crystal AE-CP finite element models for manifesting tension-compression asymmetry. In the next ascending scale, a polycrystalline microstructure of Ni-based superalloys is simulated using an augmented AE-CP FE model with micro-twinning. Statistically equivalent virtual polycrystals of the alloy CMSX-4 are created for simulations with the homogenized model. The results of simulations at each scale are compared with experimental data with good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya A, Beaudoin AJ (2000) Grain-size effect in viscoplastic polycrystals at moderate strains. J Mech Phys Solids 48(10):2213–2230

    Article  MATH  Google Scholar 

  • Arsenlis A, Parks DM (2002) Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids 50(9):1979–2009

    Article  MATH  Google Scholar 

  • Asaro R, Needleman A (1985) Texture development and strain hardening in rate dependent polycrystals. Acta Mater 33:923–953

    Article  Google Scholar 

  • Busso E, Meissonier F, O’Dowd N (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids 48:2333–2361

    Article  MATH  Google Scholar 

  • Chatterjee D, Hazari N, Das N, Mitra R (2010) Microstructure and creep behavior of DMS4-type nickel based superalloy single crystals with orientations near \({\langle }001{\rangle }\) and \({\langle }011{\rangle }\). Mater Sci Eng: A 528:604–613

    Article  Google Scholar 

  • Cormier J, Milhet X, Mendez J (2011) Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy. Acta Mater 55:6250–6259

    Article  Google Scholar 

  • Dimiduk DM, Uchic MD, Parathasarathy TA (2005) Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53:4065–4077

    Article  Google Scholar 

  • Epishin A, Link T, Brückner U, Portella PD (2001) Kinetics of the topological inversion of the \(\gamma /\gamma ^{\prime }\)-microstructure during creep of a nickel-based superalloy. Acta Mater 49:4017–4023

    Article  Google Scholar 

  • Fedelich B (2002) A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int J Plast 18:1–49

    Article  MATH  Google Scholar 

  • Fleury G, Schubert F, Nickel H (1996) Modelling of the thermo-mechanical behaviour of the single crystal superalloy CMSX-4. Comput Mater Sci 7(1–2):187–193

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism-map. The plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  • Ghosh S (2011) Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method. CRC Press/Taylor & Francis, Boca Raton

    Book  MATH  Google Scholar 

  • Ghosh S, Anahid M (2013) Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys. Part 1: macroscopic anisotropic yield function. Int J Plast 47:182–201

    Article  Google Scholar 

  • Ghosh S, Bai J, Paquet D (2009) Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities. J Mech Phys Solids 57(7):1017–1044

    Article  MATH  Google Scholar 

  • Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008a) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56(6):1257–1273

    Google Scholar 

  • Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008b) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater 56(6):1274–1287

    Google Scholar 

  • Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(5):1–17

    Google Scholar 

  • Hill R (1984) On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math Proc Camb Philos Soc 95:481–494

    Article  MATH  Google Scholar 

  • Hong HU, Kim IS, Choi BG, Kim MY, Jo CY (2009) The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy. Mater Sci Eng: A 517:125–131

    Article  Google Scholar 

  • Ignat M, Buffiere JY, Chaix JM (1993) Microstructures induced by a stress gradient in a nickel-based superalloy. Acta Mater 41:855–862

    Article  Google Scholar 

  • Kakehi K (1999) Tension/compression asymmetry in creep behavior of a Ni-based superalloy. Scr Mater 41(5):461–465

    Article  Google Scholar 

  • Karthikeyan S, Unocic R, Sarosi P, Viswanathan G, Whitis D, Mills M (2006) Modeling microtwinning during creep in Ni-based superalloys. Scr Mater 54(6):1157–1162

    Article  Google Scholar 

  • Kayser FX, Stassis C (1981) The elastic constants of Ni\(_3\)Al at 0 and 23.5 \(^\circ \)C. Phys Stat Sol (a) 64(1):335–342

    Article  Google Scholar 

  • Keshavarz S, Ghosh S (2013) Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater 61(17):6549–6561

    Article  Google Scholar 

  • Keshavarz S, Ghosh S (2014) Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct. doi:10.1016/j.ijsolstr.2014.03.037

  • Knowles D, Gunturi S (2002) The role of \({\langle }112{\rangle }\)111 slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater Sci Eng: A 328(1–2):223–237

    Google Scholar 

  • Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip, vol 19. Progress in Materials SciencePergamon Press, Oxford

    Google Scholar 

  • Kovarik L, Unocic R, Li J, Sarosi P, Shen C, Wang Y, Mills M (2009) Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog Mater Sci 54:839–873

    Article  Google Scholar 

  • Ma A, Roters F (2004) A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater 52(12):3603–3612

    Article  Google Scholar 

  • Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater 54(8):2169–2179

    Article  Google Scholar 

  • Ma A, Dye D, Reed R (2008) A model for the creep deformation behaviour of single-crystal superalloy CMSX-4. Acta Mater 56(8):1657–1670

    Article  Google Scholar 

  • McLean M, Cahn R (1996) Nickel-base superalloys: current status and potential. High Temperature Structural Materials. Chapman and Hall, London

    Google Scholar 

  • Miao J, Pollock TM, Jones JW (2012) Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater 60(6–7):2840–2854

    Article  Google Scholar 

  • Nouailhas D, Cailletaud G (1996) Multiaxial behaviour of Ni-base single crystals. Scr Mater 34(4):565–571

    Article  Google Scholar 

  • Ohashi T, Hidaka K, Saito M (1997) Quantitative study of the plastic slip deformation and formation of internal stresses in Ni-base superalloys. Mater Sci Eng: A 238:42–49

    Article  Google Scholar 

  • Pollock TM, Argon A (1992) Creep resistance of CMSX-3 nickel-base superalloy single-crystals. Acta Metall 40:1–30

    Article  Google Scholar 

  • Pollock TM, Sammy T (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Prop Power 22(2):361–375

    Article  Google Scholar 

  • Roters F, Eisenlohr P, Hantcherli L, Tjahjantoa DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  • Shenoy M (2006) Constitutive modeling and life prediction in Ni-base superalloys. PhD thesis, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Shenoy M, Zhang J, McDowell D (2007) Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract Eng Mater Struct 30(10):889–904

    Article  Google Scholar 

  • Simmetrix Inc (2014) Simmetrix, http://www.simmetrix.com/

  • Sugui T, Jun X, Xiaoming Z, Benjiang Q, Jianwei L, Lili Y, Wuxiang W (2011) Microstructure and creep behavior of FGH95 nickel-base superalloy. Mater Sci Eng: A 528:2076–2084

    Article  Google Scholar 

  • Thomas J, Groeber M, Ghosh S (2012) Image-based crystal plasticity FE framework for microstructure dependent properties of TI-6AL-4V alloys. Mater Sci Eng: A 553:164–175

    Article  Google Scholar 

  • Torster F, Baumeister G, Albrecht J, Lütjering G, Helm D, Daeubler MA (1997) Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI. Mater Sci Eng: A 234–236:189–192

    Article  Google Scholar 

  • Unocic RR, Zhou N, Kovarik L, Shen C, Wang Y, Mills MJ (2011) Dislocation decorrelation and relationship to deformation microtwins during creep of a \(\gamma ^{\prime }\) precipitate strengthened Ni-based superalloy. Acta Mater 59:7325–7339

    Article  Google Scholar 

  • van Sluytman JS, Pollock TM (2012) Optimal precipitate shapes in nickel-base \(\gamma -\gamma ^{\prime }\) alloys. Acta Mater 60(4):855–862

    Google Scholar 

  • Viswanathan GB, SP M, Whitis DH, Mills MJ (2005) Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT. Mater Sci Eng: A 400–401:489–495

    Google Scholar 

  • Xie CL, Ghosh S, Groeber M (2004) Modeling cyclic deformation of HSLA steels using crystal plasticity. J Eng Mater Technol 126(4):339–352

    Article  Google Scholar 

  • Zambaldi C, Roters F, Raabe D, Glatzel U (2007) Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy. Mater Sci Eng: A 454–455:433–440

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the National Science Foundation, Civil and Mechanical Systems Division through Grant No. CMMI-0800587 (program manager: Dr. Clark Cooper), and by Air Force Office of Scientific Research through Grant No. FA9550-13-1-0062 (program manager: Dr. David Stargel). This sponsorship is gratefully acknowledged. Computer use of the Hopkins High Performance Computing facilities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, S., Keshavarz, S., Weber, G. (2015). Computational Multiscale Modeling of Nickel-Based Superalloys Containing Gamma-Gamma’ Precipitates. In: Altenbach, H., Brünig, M. (eds) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-14660-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14660-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14659-1

  • Online ISBN: 978-3-319-14660-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics