Skip to main content

Hysteresis Loop Analysis in Cyclically Strained Materials

  • Chapter
  • First Online:
  • 1182 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 57))

Abstract

The generalized statistical theory of the hysteresis loop is adopted to describe the stress-strain relations, preferably in cyclic straining. The effective stress and the distribution of the internal critical stresses in cyclic straining are evaluated in two materials cycled at room and at elevated temperatures using the analysis of the hysteresis loop shape. The evolution of the shape of the probability density function of the internal critical stresses yields deeper insight into the mechanisms of cyclic plastic straining. It indicates the important role of cyclic plastic strain localization in room temperature fatigue softening. The approximation of the probability density function by Weibull distribution leads to the assessment of the effective and internal stresses and allows the simulation of the relations between the stress and strain in case of different cyclic histories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Karim M, Khan A (2010) Cyclic multiaxial and shear finite deformation responses of OFHC Cu. Part II: An extension to the KHL model and simulations. Int J Plasticity 26:758–773

    Article  MATH  Google Scholar 

  • Afanasjev NN (1953) Statistical theory of fatigue strength of metals (in Russ.: Statisticheskaja teorija ustalostnoj prochnosti metallov). Izd. Akad. Nauk USSR, Kiev

    Google Scholar 

  • Burmeister HJ, Holste C (1981) Change of activation area during cyclic deformation II. Quantitattive interpretation with a model of heterogeneous plastic deformation. Phys Stat Sol 64:611–624

    Article  Google Scholar 

  • Caillard D, Martin JL (2003) Thermally activated mechanisms in crystal plasticity. Elsevier, Oxford

    Google Scholar 

  • Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plasticity 24(10):1642–1693

    Article  MATH  Google Scholar 

  • Chang B, Zhang Z (2012) Low cycle fatigue behavior of a high nitrogen austenitic stainless steel under uniaxial and non-proportional loadings based on the partition of hysteresis loops. Mater Sci Eng A 547:72–79

    Article  Google Scholar 

  • Christ HJ (1991) Wechselverformung von Metallen-Zyklisches Spannungs-Dehnungs-Verhalten und Mikrostruktur. In: Ilschner B (ed) Werkstoff-Forschung und - Technik, vol 9. Springer, Berlin, pp 457–460

    Google Scholar 

  • Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Dickson JI, Boutin J, Handfield L (1984) A comparison of two simple methods for measuring cyclic internal and effective stresses. Mater Sci Eng 64(1):L7–L11

    Article  Google Scholar 

  • Evrard P, Alvarez-Armas I, Aubin V, Degallaix S (2010) Polycrystalline modeling of the cyclic hardening/softening behavior of an austenitic-ferritic stainless steel. Mech Mater 42:395–404

    Article  Google Scholar 

  • Feaugas X, Catalao S, Pilvin P, Cabrillat MT (2008) On the evolution of cyclic deformation microstructure during relaxation test in austenitic stainless steel at 823 K. Mater Sci Eng A 483–484:422–425

    Article  Google Scholar 

  • Heino S, Karlsson B (2001) Cyclic deformation and fatigue behaviour of 7Mo-0.5N superaustenitic stainless steel—stress-strain relations and fatigue life. Acta Mater 49:339–351

    Article  Google Scholar 

  • Kuhlmann-Wilsdorf D, Laird C (1979) Dislocation behavior in fatigue. II. Friction stress and back stress as inferred from an analysis of hysteresis loops. Mater Sci Eng 37(2):111–120

    Article  Google Scholar 

  • Laird C, Charsley P, Mughrabi H (1986) Low energy dislocation structures produced by cyclic deformation. Mater Sci Eng 81:433–450

    Article  Google Scholar 

  • Lin B, Zhao LG, Tong J, Christ HJ (2010) Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature. Mater Sci Eng A 527:3581–3587

    Article  Google Scholar 

  • Man J, Obrtlík K, Polák J (2009) Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Phil Mag 89:1295–1336

    Article  Google Scholar 

  • Masing G (1923) Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgene elastische Spannungen. Wissenschaftliche Veröffentlichung aus dem Siemens-Konzern 3:231–239

    Article  Google Scholar 

  • Masing G (1925) Eigenspannungen in kaltgereckten Metallen. Z Tech Phys 6:569–573

    Google Scholar 

  • Mayer T, Mazza E, Holdsworth SR (2013a) A continuous Masing approach for a physically motivated formulation of temperature and strain-rate dependent plasticity. Mater Sci Eng A 102–103:1–12

    Google Scholar 

  • Mayer T, Mazza E, Holdsworth SR (2013b) Parameter evolution in a continuous Masing approach for cyclic plasticity and its physical interpretation. Mech Mater 57:86–96

    Article  Google Scholar 

  • Obrtlík K, Kruml T (1994) Low energy dislocation structures produced by cyclic deformation. Mater Sci Eng A 187:1–9

    Article  Google Scholar 

  • Petrenec M, Polák J, Tobiáš J, Šmíd M, Chlupová A, Petráš R (2014) Analysis of cyclic plastic response of nickel based IN738LC superalloy. Int J Fatigue 65:44–50

    Article  Google Scholar 

  • Polák J (1991) Cyclic plasticity and low cycle fatigue life of metals. Mater Sci Monogr, vol 63. Academia-Elsevier, Praha-Amsterdam

    Google Scholar 

  • Polák J (2003) Cyclic deformation, crack initiation and low cycle fatigue. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, vol 4. Elsevier, Amsterdam, pp 1–39

    Chapter  Google Scholar 

  • Polák J, Klesnil M (1980) Statistická teorie hysterézní smyčky (in Czech.). Kovové Mater 18:319–344

    Google Scholar 

  • Polák J, Klesnil M (1982) The hysteresis loop 1. A statistical theory. Fatigue Eng Mater Struct 5:19–32

    Article  Google Scholar 

  • Polák J, Klesnil M, Helešic J (1982) The hysteresis loop 2. An analysis of the loop shape. Fatigue Eng Mater Struct 5:33–44

    Article  Google Scholar 

  • Polák J, Fardoun F, Degallaix S (1996) Effective and internal stresses in cyclic straining of 316 stainless steel. Mater Sci Eng A 215:104–112

    Article  Google Scholar 

  • Polák J, Fardoun F, Degallaix S (2001a) Analysis of the hysteresis loop in stainless steel. I. Austenitic and ferritic steels. Mater Sci Eng A 297:144–153

    Article  Google Scholar 

  • Polák J, Fardoun F, Degallaix S (2001b) Analysis of the hysteresis loop in stainless steel. II. Austenitic-ferritic duplex steel and the effect of nitrogen. Mater Sci Eng A 297:154–161

    Article  Google Scholar 

  • Polák J, Petráš R, Heczko M, Kuběna I, Kruml T, Chai G (2014) Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature. Mater Sci Eng: A 615:175–182

    Article  Google Scholar 

  • Seeger A (1956) On the theory of the low-temperature internal friction peak observed in metals. Phil Mag 1:651–662

    Article  Google Scholar 

  • Sivaprasad S, Das A, Narasaiah N, Tarafder S (2010) Cyclic plastic behaviour of primary heat transport piping materials: Influence of loading schemes on hysteresis loop. Mater Sci Eng A 527:6858–6869

    Article  Google Scholar 

  • Skelton RP, Maier HJ, Christ H (1997) The Bauschinger effect, Masing model and the Ramberg-Osgood relation for cyclic deformation in metals. Mater Sci Eng A 238:377–390

    Article  Google Scholar 

  • Vogt JB, Magnin TJ (1993) Effective stresses and microstructure in cyclically deformed 316L austenitic stainless steel-effect of temperature and nitrogen content. Fatigue Fracture Eng Mater Struct 16:555–564

    Article  Google Scholar 

  • Vucko F, Bosch C, Delafosse D (2014) Low cycle fatigue behavior of a high nitrogen austenitic stainless steel under uniaxial and non-proportional loadings based on the partition of hysteresis loops. Mater Sci Eng A 597:381–386

    Article  Google Scholar 

  • Weidner A, Blochwitz C, Skrotzki W, Tirschler W, Strunk W Jr (2008a) Formation of slip steps and growth of extrusions within persistent slip bands in cyclically deformed polycrystals. Mater Sci Eng A 479:181–190

    Article  Google Scholar 

  • Weidner A, Man J, Tirschler W, Klapetek P, Blochwitz C, Polák J, Skrotzki W (2008b) Half-cycle slip activity of persistent slip bands at different stages of fatigue life of polycrystalline nickel. Mater Sci Eng A 492:118–127

    Article  Google Scholar 

Download references

Acknowledgments

This work was realized in CEITEC - Central European Institute of Technology with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from European Regional Development Fund. The support by the project RVO: 68081723 and grant no. 13-23652S of GACR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Polák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polák, J., Petráš, R. (2015). Hysteresis Loop Analysis in Cyclically Strained Materials. In: Altenbach, H., Brünig, M. (eds) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-14660-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14660-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14659-1

  • Online ISBN: 978-3-319-14660-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics