Skip to main content

Creep Behavior Modeling of Polyoxymethylene (POM) Applying Rheological Models

  • Chapter
  • First Online:
Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 57))

Abstract

Polyoxymethylene (POM) is a semi-crystalline thermoplastic polymer with broad technical application. Microstructure after solidifying is strongly dependent on the thermodynamical conditions. As an outcome macroscopic observable time dependent behavior is complex and significantly non-linear. To describe creep behavior of POM a rheological model with five elements is utilized. Creep behavior of POM under monotonic loading and constant temperature conditions can be described in a satisfying manner according to experimental results. A three-dimensional generalization with a comparable backstress formulation will be given. Finally, influence of data scattering will be estimated applying statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach H (2012) Kontinuumsmechanik, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Altenbach H, Naumenko K, Zhilin P (2003) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin Mech Thermodyn 15(6):539–570

    Google Scholar 

  • Besseling JF (1994) Mathematical modelling of inelastic deformation. Springer, New York

    Book  MATH  Google Scholar 

  • Bonnet M (2014) Werkstoffauswahl-Kunststoffe. In: Kunststofftechnik. Springer, pp 219–234

    Google Scholar 

  • Gisekus H (1994) Phänomenologische Rheologie: Eine Einführung. Springer, Berlin

    Book  Google Scholar 

  • Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Advanced Texts in Physics. Springer, Berlin

    Google Scholar 

  • Katti S, Schultz M (1982) The microstructure of injection-molded semicrystalline polymers: a review. Polym Eng Sci 22(16):1001–1017

    Article  Google Scholar 

  • Kim GM, Michler G (1998) Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: part 1. Characterization of deformation processes in dependence on phase morphology. Polymer 39(23):5689–5697

    Article  Google Scholar 

  • Krawietz A (1986) Materialtheorie: mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer, New York

    Book  MATH  Google Scholar 

  • Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49(6):421–428

    Article  Google Scholar 

  • Mileva D, Androsch R, Cavallo D, Alfonso G (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polym J 48:1082–1092

    Article  Google Scholar 

  • Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multipass weld metal. Arch Appl Mech 74(11–12):808–819

    Article  MATH  Google Scholar 

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng: A 618:368–376

    Article  Google Scholar 

  • Naumenko K, Altenbach H, Kutschke A (2011) A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20(4):578–597

    Article  Google Scholar 

  • Palmov V (1998) Vibrations of elasto-plastic bodies. Foundation of Engineering Mechanics. Springer, Berlin

    Google Scholar 

  • Plummer C, Kausch HH (1995) Real-time image analysis and numerical simulation of isothermal spherulite nucleation and growth in polyoxymethylene. Colloid Polym Sci 273(8):719–732

    Article  Google Scholar 

  • Reiner M (1960) Deformation, strain and flow: an elementary introduction to rheology. H.K Lewis, London

    Google Scholar 

  • Vilchevskaya E, Ivanova E, Altenbach H (2014) Description of liquid–gas phase transition in the frame of continuum mechanics. Contin Mech Thermodyn 26(2):221–245. doi:10.1007/s00161-013-0298-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Altenbach, H., Girchenko, A., Kutschke, A., Naumenko, K. (2015). Creep Behavior Modeling of Polyoxymethylene (POM) Applying Rheological Models. In: Altenbach, H., Brünig, M. (eds) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-14660-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14660-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14659-1

  • Online ISBN: 978-3-319-14660-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics