Advertisement

Dye-Sensitised Solar Cells

  • Matevž BokaličEmail author
  • Marko Topič
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Dye-sensitised solar cells are presented as an example of third generation photovoltaic devices. Their structure and fabrication are described as required for understanding spatial inhomogeneities. Because light interaction takes place via dye molecules, the operation of dye-sensitised solar cells is explained together with the operation under an electroluminescence regime. Conversion efficiency inhomogeneities of dye-sensitised solar cells are distinguished between manufacturing, other and unknown inhomogeneities. Each inhomogeneity type is described by a specific fingerprint obtained using transmittance imaging, light beam induced current and electroluminescence measurements. Ageing studies of dye-sensitised solar cells using transmittance imaging and electroluminescence measurements represents another use of spatial characterisation techniques and reveals the dynamics of the iodine present in the electrolyte.

Keywords

Dye sensitised solar cell (DSSC) Electroluminescence Light beam induced current (LBIC) Transmittance imaging Ageing 

References

  1. 1.
    Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153. doi: 10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  2. 2.
    Asghar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P (2010) Review of stability for advanced dye solar cells. Energ Environ Sci 3:418–426. doi: 10.1039/b922801b CrossRefGoogle Scholar
  3. 3.
    Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169. doi: 10.1038/nphoton.2012.22 CrossRefGoogle Scholar
  4. 4.
    Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591. doi: 10.1038/srep00591 Google Scholar
  5. 5.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. doi: 10.1126/science.1228604 CrossRefGoogle Scholar
  6. 6.
    Miettunen K, Halme J, Lund P (2009) Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochem Commun 11:25–27. doi: 10.1016/j.elecom.2008.10.013 CrossRefGoogle Scholar
  7. 7.
    Scott MJ, Woodhouse M, Parkinson BA, Elliott CM (2008) Spatially resolved current-voltage measurements-evidence for nonuniform photocurrents in dye-sensitized solar cells. J Electrochem Soc 155:290–293. doi: 10.1149/1.2830944 CrossRefGoogle Scholar
  8. 8.
    Jones TW, Feron K, Anderson KF, Duck BC, Wilson GJ (2014) An applied light-beam induced current study of dye-sensitised solar cells: photocurrent uniformity mapping and true photoactive area evaluation. J Appl Phys 116:043104. doi: 10.1063/1.4890935 CrossRefGoogle Scholar
  9. 9.
    Navas FJ, Alcantara R, Fernandez-Lorenzo C, Martin J (2009) A methodology for improving laser beam induced current images of dye sensitized solar cells. Rev Sci Instrum 80:063102. doi: 10.1063/1.3147381 CrossRefGoogle Scholar
  10. 10.
    Macht B, Turrión M, Barkschat A, Salvador P, Ellmer K, Tributsch H (2002) Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques. Sol Energ Mat Sol Cells 73:163–173. doi: 10.1016/S0927-0248(01)00121-0 CrossRefGoogle Scholar
  11. 11.
    Bokalič M, Krašovec UO, Topič M (2013) Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Prog Photovolt Res Appl 21:1176–1180. doi: 10.1002/pip.2224 Google Scholar
  12. 12.
    Wen-Bo X, Wei-Qing L, Xing-Dao H (2013) Analysis of electron recombination in dye sensitized solar cells based on the forward bias dependence of dark current and electroluminescence characterization. Chin Phys Lett 30:108801. doi: 10.1088/0256-307X/30/10/108801 CrossRefGoogle Scholar
  13. 13.
    Kirchartz T, Mattheis J, Rau U (2008) Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys Rev B 78:235320. doi: 10.1103/PhysRevB.78.235320 CrossRefGoogle Scholar
  14. 14.
    Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) Sponge-like TiO2 layers for dye-sensitized solar cells. J Sol-Gel Sci Technol 53:647–654. doi: 10.1007/s10971-009-2144-6 CrossRefGoogle Scholar
  15. 15.
    Opara Krašovec U, Berginc M, Hočevar M, Topič M (2009) Unique TiO2 paste for high efficiency dye-sensitized solar cells. Sol Energ Mat Sol Cells 93:379–381. doi: 10.1016/j.solmat.2008.11.012 CrossRefGoogle Scholar
  16. 16.
    Solaronix—innovative solutions for solar professionals. http://www.solaronix.com/. Accessed 7 Aug 2014
  17. 17.
    Berginc M, Opara Krašovec U, Jankovec M, Topič M (2007) The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte. Sol Energ Mat Sol Cells 91:821–828. doi: 10.1016/j.solmat.2007.02.001 CrossRefGoogle Scholar
  18. 18.
    Athanassov Y, Rotzinger FP, Péchy P, Grätzel M (1997) Sensitized electroluminescence on mesoporous oxide semiconductor films. J Phys Chem B 101:2558–2563. doi: 10.1021/jp962192j CrossRefGoogle Scholar
  19. 19.
    Trupke T, Würfel P, Uhlendorf I, Lauermann I (1999) Electroluminescence of the dye-sensitized solar cell. J Phys Chem B 103:1905–1910. doi: 10.1021/jp982555a CrossRefGoogle Scholar
  20. 20.
    Martinson ABF, Hamann TW, Pellin MJ, Hupp JT (2008) New architectures for dye-sensitized solar cells. Chem Eur J 14:4458–4467. doi: 10.1002/chem.200701667 CrossRefGoogle Scholar
  21. 21.
    Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi: 10.1103/PhysRevB.76.085303 CrossRefGoogle Scholar
  22. 22.
    Opara Krašovec U, Bokalič M, Topič M (2013) Ageing of DSSC studied by electroluminescence and transmission imaging. Sol Energ Mat Sol Cells 117:67–72. doi: 10.1016/j.solmat.2013.05.029 CrossRefGoogle Scholar
  23. 23.
    Berginc M, Opara Krašovec U, Topič M (2014) Outdoor ageing of the dye-sensitized solar cell under different operation regimes. Sol Energ Mat Sol Cells 120:491–499. doi: 10.1016/j.solmat.2013.09.029
  24. 24.
    Berginc M, Topič M, Opara Krašovec U (2014) Recovery of dye-sensitized solar cell’s performance by heat treatment. Phys Chem Chem Phys 16:12940–12948. doi: 10.1039/C4CP01463D

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations