Advertisement

Spatially Resolved Characterisation Techniques

  • Matevž BokaličEmail author
  • Marko Topič
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Techniques for spatial characterisation are presented: optical imaging, light beam induced current, electro- and photoluminescence, and thermography. An emphasis is placed on luminescence techniques, where image acquisition and processing are explained in detail with the aim of producing a true luminescence image. The steps required for absolute luminescence evaluation are described.

Keywords

Light beam induced current Electroluminescence Photoluminescence Thermography Image acquisition Image processing 

References

  1. 1.
    Mauk MG (2012) Image processing for solar cell analysis, diagnostics and quality assurance inspection. In: Anwar S, Efstathiadis H, Qazi S (eds) Handbook of research on solar energy systems and technologies: IGI Global, pp 338–375Google Scholar
  2. 2.
    Bokalič M, Krašovec UO, Topič M (2013) Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Prog Photovolt Res Appl 21:1176–1180. doi: 10.1002/pip.2224 Google Scholar
  3. 3.
    Berginc M, Krašovec UO, Topič M (2014) Outdoor ageing of the dye-sensitized solar cell under different operation regimes. Sol Energy Mat Sol Cells 120:491–499. doi: 10.1016/j.solmat.2013.09.029 CrossRefGoogle Scholar
  4. 4.
    Hari Rao CV (1976) Electrical effects of SiC inclusions in EFG silicon ribbon solar cells. J Appl Phys 47:2614. doi: 10.1063/1.322980 CrossRefGoogle Scholar
  5. 5.
    Zook JD (1980) Effects of grain boundaries in polycrystalline solar cells. Appl Phys Lett 37:223. doi: 10.1063/1.91832 CrossRefGoogle Scholar
  6. 6.
    Navas FJ, Alcantara R, Fernandez-Lorenzo C, Martin J (2009) A methodology for improving laser beam induced current images of dye sensitized solar cells. Rev Sci Instrum 80:063102. doi: 10.1063/1.3147381 CrossRefGoogle Scholar
  7. 7.
    Geisthardt RM, Sites JR (2014) Nonuniformity characterization of CdTe solar cells using LBIC. IEEE J Photovolt 4:1114–1118. doi: 10.1109/JPHOTOV.2014.2314575 CrossRefGoogle Scholar
  8. 8.
    Acciarri M, Binetti S, Racz A, Pizzini S, Agostinelli G (2002) Fast LBIC in-line characterization for process quality control in the photovoltaic industry. Sol Energy Mat Sol Cells 72:417–424. doi: 10.1016/S0927-0248(01)00189-1 CrossRefGoogle Scholar
  9. 9.
    Bokalič M, Jankovec M, Topič M (2009) Solar cell efficiency mapping by LBIC. 45th International conference on microelectronics, devices and materials and the workshop on advanced photovoltaic devices and technologies, MIDEM 2009 proceedings. Postojna, Slovenia, pp 269–273Google Scholar
  10. 10.
    Bokalič M, Topič M (2010) Light beam characterisation of LBIC apparatus and selected complementary applications. 46th International Conference on Microelectronics, Devices and Materials and the Workshop on Optical sensors, MIDEM 2010 proceedings. Radenci, Slovenia, pp 233–237Google Scholar
  11. 11.
    Vorster FJ, van Dyk EE (2007) Bias-dependent high saturation solar LBIC scanning of solar cells. Sol Energy Mat Sol Cells 91:871–876. doi: 10.1016/j.solmat.2007.01.021 CrossRefGoogle Scholar
  12. 12.
    Vorster FJ, van Dyk EE (2008) Solar LBIC scanning of high-efficiency point-contact silicon solar cells. Phys Status Solidi C 5:649–652. doi: 10.1002/pssc.200776841 CrossRefGoogle Scholar
  13. 13.
    Pernau T, Fath P, Bucher E (2002) Phase-sensitive LBIC analysis. Conference record of the twenty-ninth IEEE photovoltaic specialists conference 2002, pp 442–445Google Scholar
  14. 14.
    Rinio M, Möller HJ, Werner M (1998) LBIC Investigations of the lifetime degradation by extended defects in multicrystalline solar silicon. Solid State Phenom 63–64:115–122. doi: 10.4028/www.scientific.net/SSP.63-64.115 CrossRefGoogle Scholar
  15. 15.
    Carstensen J, Popkirov G, Bahr J, Föll H (2003) CELLO: an advanced LBIC measurement technique for solar cell local characterization. Sol Energy Mat Sol Cells 76:599–611. doi: 10.1016/S0927-0248(02)00270-2 CrossRefGoogle Scholar
  16. 16.
    Eisgruber IL, Sites JR (1996) Extraction of individual-cell photocurrents and shunt resistances in encapsulated modules using large-scale laser scanning. Prog Photovolt Res Appl 4:63–75. doi:  10.1002/(SICI)1099-159X(199601/02)4:1<63::AID-PIP112>3.0.CO;2-R
  17. 17.
    Vorasayan P, Betts TR, Tiwari AN, Gottschalg R (2009) Multi-laser LBIC system for thin film PV module characterisation. Sol Energy Mat Sol Cells 93:917–921. doi: 10.1016/j.solmat.2008.10.019 CrossRefGoogle Scholar
  18. 18.
    Padilla M, Michl B, Thaidigsmann B, Warta W, Schubert MC (2014) Short-circuit current density mapping for solar cells. Sol Energy Mat Sol Cells 120:282–288. doi: 10.1016/j.solmat.2013.09.019 CrossRefGoogle Scholar
  19. 19.
    Shirakata S, Yudate S, Honda J, Iwado N (2011) Photoluminescence of Cu(In,Ga)Se2 in the solar cell preparation process. Jpn J Appl Phys 50:05FC02. doi:  10.1143/JJAP.50.05FC02
  20. 20.
    Van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in Germanium. Phys Rev 94:1558–1560. doi: 10.1103/PhysRev.94.1558 CrossRefGoogle Scholar
  21. 21.
    Lasher G, Stern F (1964) Spontaneous and stimulated recombination radiation in semiconductors. Phys Rev 133:A553–A563. doi: 10.1103/PhysRev.133.A553 CrossRefGoogle Scholar
  22. 22.
    Wurfel P (1982) The chemical potential of radiation. J Phys C 15:3967–3985. doi: 10.1088/0022-3719/15/18/012 CrossRefGoogle Scholar
  23. 23.
    Schick K, Daub E, Finkbeiner S, Würfel P (1992) Verification of a generalized Planck law for luminescence radiation from silicon solar cells. Appl Phys A 54:109–114. doi: 10.1007/BF00323895 CrossRefGoogle Scholar
  24. 24.
    Daub E, Würfel P (1995) Ultralow values of the absorption coefficient of Si obtained from luminescence. Phys Rev Lett 74:1020–1023. doi: 10.1103/PhysRevLett.74.1020 CrossRefGoogle Scholar
  25. 25.
    Würfel P, Finkbeiner S, Daub E (1995) Generalized Planck’s radiation law for luminescence via indirect transitions. Appl Phys A 60:67–70. doi: 10.1007/BF01577615 CrossRefGoogle Scholar
  26. 26.
    Trupke T, Daub E, Würfel P (1998) Absorptivity of silicon solar cells obtained from luminescence. Sol Energy Mat Sol Cells 53:103–114. doi: 10.1016/S0927-0248(98)00016-6 CrossRefGoogle Scholar
  27. 27.
    Ostapenko S, Tarasov I, Kalejs JP, Haessler C, Reisner E-U (2000) Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers. Semicond Sci Technol 15:840. doi: 10.1088/0268-1242/15/8/310 CrossRefGoogle Scholar
  28. 28.
    Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:262108. doi: 10.1063/1.1978979 CrossRefGoogle Scholar
  29. 29.
    Trupke T, Bardos RA, Schubert MC, Warta W (2006) Photoluminescence imaging of silicon wafers. Appl Phys Lett 89:044107. doi: 10.1063/1.2234747 CrossRefGoogle Scholar
  30. 30.
    Würfel P, Trupke T, Puzzer T, Schäffer E, Warta W, Glunz SW (2007) Diffusion lengths of silicon solar cells from luminescence images. J Appl Phys 101:123110. doi: 10.1063/1.2749201 CrossRefGoogle Scholar
  31. 31.
    Mitchell B, Trupke T, Weber JW, Nyhus J (2011) Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J Appl Phys 109:083111. doi: 10.1063/1.3575171 CrossRefGoogle Scholar
  32. 32.
    Trupke T, Bardos RA, Abbott MD, Chen FW, Cotter JE, Lorenz A (2006) Fast photoluminescence imaging of silicon wafers. Conference record of the 2006 IEEE 4th world conference on photovoltaic energy conversion. pp 928–931Google Scholar
  33. 33.
    Hinken D, Ramspeck K, Bothe K, Fischer B, Brendel R (2007) Series resistance imaging of solar cells by voltage dependent electroluminescence. Appl Phys Lett 91:182104. doi: 10.1063/1.2804562 CrossRefGoogle Scholar
  34. 34.
    Haunschild J, Glatthaar M, Kasemann M, Rein S, Weber ER (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. doi: 10.1002/pssr.200903175 CrossRefGoogle Scholar
  35. 35.
    Helbig A, Kirchartz T, Schaeffler R, Werner JH, Rau U (2010) Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules. Sol Energy Mat Sol Cells 94:979–984. doi: 10.1016/j.solmat.2010.01.028 CrossRefGoogle Scholar
  36. 36.
    Zhang L, Shen H (2009) Determination of the specific shunt resistances under and away from the front contacts of solar cell. Sci China Ser E-Technol Sci 52:3082–3084. doi: 10.1007/s11431-009-0298-7 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Bardos R a., Pink E, Abbott M d., Warta W (2008) Luminescence imaging for the detection of shunts on silicon solar cells. Prog Photovolt Res Appl 16:297–305. doi:  10.1002/pip.812
  38. 38.
    Zhang L, Shen H, Yang Z, Jin J (2010) Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting. Prog Photovolt Res Appl 18:54–60. doi: 10.1002/pip.934 CrossRefGoogle Scholar
  39. 39.
    Abbott MD, Trupke T, Hartmann HP, Gupta R, Breitenstein O (2007) Laser isolation of shunted regions in industrial solar cells. Prog Photovolt Res Appl 15:613–620. doi: 10.1002/pip.766 CrossRefGoogle Scholar
  40. 40.
    Glatthaar M, Haunschild J, Kasemann M, Giesecke J, Warta W, Rein S (2010) Spatially resolved determination of dark saturation current and series resistance of silicon solar cells. Phys Status Solidi Rapid Res Lett 4:13–15. doi: 10.1002/pssr.200903290 CrossRefGoogle Scholar
  41. 41.
    Hameiri Z, Chaturvedi P, Juhl MK, Trupke T (2013) Spatially resolved emitter saturation current by photoluminescence imaging. IEEE 39th photovoltaic specialists conference (PVSC) 2013, pp 0664–0668Google Scholar
  42. 42.
    Shen C, Kampwerth H, Green M, Trupke T, Carstensen J, Schütt A (2013) Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements. Sol Energy Mat Sol Cells 109:77–81. doi: 10.1016/j.solmat.2012.10.010 CrossRefGoogle Scholar
  43. 43.
    Breitenstein O, Bauer J, Wagner J-M, Zakharov N, Blumtritt H, Lotnyk A, Kasemann M, Kwapil W, Warta W (2010) Defect-induced breakdown in multicrystalline silicon solar cells. IEEE Trans Electron Dev 57:2227–2234. doi: 10.1109/TED.2010.2053866 CrossRefGoogle Scholar
  44. 44.
    Schneemann M, Helbig A, Kirchartz T, Carius R, Rau U (2010) Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial resolution. Phys Status Solidi A 207:2597–2600. doi: 10.1002/pssa.201026309 CrossRefGoogle Scholar
  45. 45.
    Schubert MC (2008) Spatially resolved luminescence spectroscopy on multicrystalline silicon. 23rd European photovoltaic solar energy conference. Valencia, Spain, pp 17–23Google Scholar
  46. 46.
    Li Q, Wang W, Ma C, Zhu Z (2010) Detection of physical defects in solar cells by hyperspectral imaging technology. Opt Laser Technol 42:1010–1013. doi: 10.1016/j.optlastec.2010.01.022 CrossRefGoogle Scholar
  47. 47.
    Olsen E, Flø AS (2011) Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers. Appl Phys Lett 99:011903. doi: 10.1063/1.3607307 CrossRefGoogle Scholar
  48. 48.
    Delamarre A, Lombez L, Guillemoles JF (2012) Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J Photon Energy 2:027004. doi: 10.1117/1.JPE.2.027004 CrossRefGoogle Scholar
  49. 49.
    Binetti S, Le Donne A, Sassella A (2014) Photoluminescence and infrared spectroscopy for the study of defects in silicon for photovoltaic applications. Sol Energy Mat Sol Cells 130:696–703. doi: 10.1016/j.solmat.2014.02.004 CrossRefGoogle Scholar
  50. 50.
    Fullerton S, Bennett K, Toda E, Takahashi T (2012) ORCA-Flash4.0 white paperGoogle Scholar
  51. 51.
    Bokalič M, Raguse J, Sites JR, Topič M (2013) Analysis of electroluminescence images in small-area circular CdTe solar cells. J Appl Phys 114:123102. doi: 10.1063/1.4820392 CrossRefGoogle Scholar
  52. 52.
    Fuyuki T, Kitiyanan A (2009) Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl Phys A 96:189–196. doi: 10.1007/s00339-008-4986-0 CrossRefGoogle Scholar
  53. 53.
    Price KJ, Vasko A, Gorrelland L, Compaan AD (2003) Temperature-dependent electroluminescence from CdTe/CdS solar cells. MRS Online Proceedings Library 763:195–200Google Scholar
  54. 54.
    Kirchartz T, Rau U, Kurth M, Mattheis J, Werner JH (2007) Comparative study of electroluminescence from Cu(In, Ga)Se2 and Si solar cells. Thin Solid Films 515:6238–6242. doi: 10.1016/j.tsf.2006.12.105 CrossRefGoogle Scholar
  55. 55.
    Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In, Ga)Se2 and Si thin-film solar cells. Sol Energy Mat Sol Cells 126:95–130. doi: 10.1016/j.solmat.2014.04.018 CrossRefGoogle Scholar
  56. 56.
    Giesecke JA, Kasemann M, Warta W (2009) Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. J Appl Phys 106:014907. doi: 10.1063/1.3157200 CrossRefGoogle Scholar
  57. 57.
    Topič M, Raguse J, Zaunbrecher K, Bokalič M, Sites JR (2011) Electroluminescence of thin film solar cells and PV modules—camera calibration. Proceedings of 26th EUPVSEC, Hamburg, Germany, pp 2963–2966Google Scholar
  58. 58.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  59. 59.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefGoogle Scholar
  60. 60.
    Green MA (2011) Radiative efficiency of state-of-the-art photovoltaic cells. Prog Photovolt Res Appl 472–476. doi:  10.1002/pip.1147
  61. 61.
    Breitenstein O, Warta W, Langenkamp M (2010) Lock-in thermography—basics and use for evaluating electronic devices and materials. Springer, BerlinGoogle Scholar
  62. 62.
    Gerber A, Huhn V, Tran TMH, Siegloch M, Augarten Y, Pieters BE, Rau U (2014) Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Sol Energy Mat Sol C. doi:  10.1016/j.solmat.2014.09.020
  63. 63.
    Bauer J, Breitenstein O, Wagner J-M (2009) Lock-in thermography: a versatile tool for failure analysis of solar cells. Electron Device Fail Anal 11:6–12Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations