Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 593 Accesses

Abstract

The theoretical background on photovoltaic (PV) device operation is reviewed. The principle of light absorption in direct and indirect semiconductors, and the use of a p–n and p–i–n devices are explained. Basic performance parameters and one-diode model parameters of solar cells are introduced and explained together with intrinsic and extrinsic loss mechanisms. Extrinsic losses originating from the spatial dimensions of the devices are systematically presented. General recombination processes are reviewed with an emphasis on radiative recombinations, which are the source of luminescence. A distinction is made between a photo- and electroluminescence image based on the type of luminescence excitation. Finally, a summary of the reciprocity relation between PV quantum efficiency and electroluminescence is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierret RF (2003) Advanced semiconductor fundamentals. Prentice Hall/Pearson Education, Upper Saddle River

    Google Scholar 

  2. Krč J, Topič M (2013) Optical modeling and simulation of thin-film photovoltaic devices. CRC Press, Boca Raton

    Google Scholar 

  3. Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  4. Hirst LC, Ekins-Daukes NJ (2011) Fundamental losses in solar cells. Prog Photovolt Res Appl 19:286–293. doi:10.1002/pip.1024

    Article  Google Scholar 

  5. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi:10.1063/1.1736034

    Article  Google Scholar 

  6. Miller OD, Yablonovitch E, Kurtz SR (2012) Strong internal and external luminescence as solar cells approach the shockley-queisser limit. IEEE J Photovolt 2:303–311. doi:10.1109/JPHOTOV.2012.2198434

    Article  Google Scholar 

  7. Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:262108–262108-3. doi:10.1063/1.1978979

    Article  Google Scholar 

  8. Haunschild J, Glatthaar M, Kasemann M, Rein S, Weber ER (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. doi:10.1002/pssr.200903175

    Article  Google Scholar 

  9. Bokalič M, Černivec G, Demolliens A, Revel J, Topič M, Poličnik M, Merc U (2010) Electroluminescence findings and IR LED I-V curve measurement in (wafer-based) solar cell module production. In: 25th European photovoltaic solar energy conference and 5th world conference on photovoltaic energy conversion. WIP-Renewable Energies, Valencia, Spain, pp 4184–4188

    Google Scholar 

  10. Chunduri SK (2011) No place to hide-market survey on luminescence imaging systems and cameras. Photon Int 1:158

    Google Scholar 

  11. Michl B, Padilla M, Geisemeyer I, Haag ST, Schindler F, Schubert MC, Warta W (2014) Imaging techniques for quantitative silicon material and solar cell analysis. IEEE J Photovolt 4:1502–1510. doi:10.1109/JPHOTOV.2014.2358795

    Article  Google Scholar 

  12. Kirchartz T, Helbig A, Rau U (2008) Note on the interpretation of electroluminescence images using their spectral information. Sol Energ Mat Sol Cells 92:1621–1627. doi:10.1016/j.solmat.2008.07.013

    Article  Google Scholar 

  13. Kirchartz T, Rau U, Kurth M, Mattheis J, Werner JH (2007) Comparative study of electroluminescence from Cu(In, Ga)Se2 and Si solar cells. Thin Solid Films 515:6238–6242. doi:10.1016/j.tsf.2006.12.105

    Article  Google Scholar 

  14. Trupke T, Würfel P, Uhlendorf I, Lauermann I (1999) Electroluminescence of the dye-sensitized solar cell. J Phys Chem B 103:1905–1910. doi:10.1021/jp982555a

    Article  Google Scholar 

  15. Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2012) Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells. Phys Status Solidi C 9:1963–1967. doi:10.1002/pssc.201200428

    Article  Google Scholar 

  16. Li Q, Wang W, Ma C, Zhu Z (2010) Detection of physical defects in solar cells by hyperspectral imaging technology. Opt Laser Technol 42:1010–1013. doi:10.1016/j.optlastec.2010.01.022

    Article  Google Scholar 

  17. Peloso MP, Lew JS, Hoex B, Aberle AG (2012) Line-imaging spectroscopy for characterisation of silicon wafer solar cells. Energy Procedia 15:171–178. doi:10.1016/j.egypro.2012.02.020

    Article  Google Scholar 

  18. Delamarre A, Lombez L, Guillemoles JF (2012) Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J Photon Energy 2:027004. doi:10.1117/1.JPE.2.027004

    Article  Google Scholar 

  19. Delamarre A (2013) Mapping solar cell parameters using hyperspectral imaging. SPIE newsroom. doi:10.1117/2.1201304.004777

  20. Abou-Ras D, Kirchartz T, Rau U (2011) Advanced characterization techniques for thin film solar cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  21. Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In, Ga)Se2 and Si thin-film solar cells. Sol Energ Mat Sol Cells 126:95–130. doi:10.1016/j.solmat.2014.04.018

    Article  Google Scholar 

  22. Kirchartz T, Rau U (2007) Electroluminescence analysis of high efficiency Cu(In, Ga)Se2 solar cells. J Appl Phys 102:104510. doi:10.1063/1.2817959

    Article  Google Scholar 

  23. Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi:10.1103/PhysRevB.76.085303

    Article  Google Scholar 

  24. Kirchartz T, Rau U (2008) Detailed balance and reciprocity in solar cells. Phys Status Solidi A 205:2737–2751. doi:10.1002/pssa.200880458

    Article  Google Scholar 

  25. Kirchartz T, Mattheis J, Rau U (2008) Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys Rev B 78:235320. doi:10.1103/PhysRevB.78.235320

    Article  Google Scholar 

  26. Kirchartz T, Helbig A, Reetz W, Reuter M, Werner JH, Rau U (2009) Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. Prog Photovolt Res Appl 17:394–402. doi:10.1002/pip.895

    Article  Google Scholar 

  27. Kirchartz T, Rau U, Hermle M, Bett AW, Helbig A, Werner JH (2008) Internal voltages in GaInP∕GaInAs∕Ge multijunction solar cells determined by electroluminescence measurements. Appl Phys Lett 92:123502. doi:10.1063/1.2903101

    Article  Google Scholar 

  28. Tran TMH, Pieters BE, Schneemann M, Müller TCM, Gerber A, Kirchartz T, Rau U (2013) Quantitative evaluation method for electroluminescence images of a-Si: H thin-film solar modules. Phys Status Solidi Rapid Res Lett 7:627–630. doi:10.1002/pssr.201308039

    Article  Google Scholar 

  29. Rau U (2012) Superposition and reciprocity in the electroluminescence and photoluminescence of solar cells. IEEE J Photovolt 2:169–172. doi:10.1109/JPHOTOV.2011.2179018

    Article  Google Scholar 

  30. Wong J, Green MA (2012) From junction to terminal: extended reciprocity relations in solar cell operation. Phys Rev B. doi:10.1103/PhysRevB.85.235205

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Bokalič .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bokalič, M., Topič, M. (2015). Theoretical Background. In: Spatially Resolved Characterization in Thin-Film Photovoltaics. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14651-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14651-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14650-8

  • Online ISBN: 978-3-319-14651-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics