Advertisement

Theoretical Background

  • Matevž BokaličEmail author
  • Marko Topič
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

The theoretical background on photovoltaic (PV) device operation is reviewed. The principle of light absorption in direct and indirect semiconductors, and the use of a p–n and p–i–n devices are explained. Basic performance parameters and one-diode model parameters of solar cells are introduced and explained together with intrinsic and extrinsic loss mechanisms. Extrinsic losses originating from the spatial dimensions of the devices are systematically presented. General recombination processes are reviewed with an emphasis on radiative recombinations, which are the source of luminescence. A distinction is made between a photo- and electroluminescence image based on the type of luminescence excitation. Finally, a summary of the reciprocity relation between PV quantum efficiency and electroluminescence is given.

Keywords

Photovoltaics Thin-film Operation Luminescence Reciprocity relation 

References

  1. 1.
    Pierret RF (2003) Advanced semiconductor fundamentals. Prentice Hall/Pearson Education, Upper Saddle RiverGoogle Scholar
  2. 2.
    Krč J, Topič M (2013) Optical modeling and simulation of thin-film photovoltaic devices. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. 4.
    Hirst LC, Ekins-Daukes NJ (2011) Fundamental losses in solar cells. Prog Photovolt Res Appl 19:286–293. doi: 10.1002/pip.1024 CrossRefGoogle Scholar
  5. 5.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi: 10.1063/1.1736034 CrossRefGoogle Scholar
  6. 6.
    Miller OD, Yablonovitch E, Kurtz SR (2012) Strong internal and external luminescence as solar cells approach the shockley-queisser limit. IEEE J Photovolt 2:303–311. doi: 10.1109/JPHOTOV.2012.2198434 CrossRefGoogle Scholar
  7. 7.
    Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:262108–262108-3. doi: 10.1063/1.1978979 CrossRefGoogle Scholar
  8. 8.
    Haunschild J, Glatthaar M, Kasemann M, Rein S, Weber ER (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. doi: 10.1002/pssr.200903175 CrossRefGoogle Scholar
  9. 9.
    Bokalič M, Černivec G, Demolliens A, Revel J, Topič M, Poličnik M, Merc U (2010) Electroluminescence findings and IR LED I-V curve measurement in (wafer-based) solar cell module production. In: 25th European photovoltaic solar energy conference and 5th world conference on photovoltaic energy conversion. WIP-Renewable Energies, Valencia, Spain, pp 4184–4188Google Scholar
  10. 10.
    Chunduri SK (2011) No place to hide-market survey on luminescence imaging systems and cameras. Photon Int 1:158Google Scholar
  11. 11.
    Michl B, Padilla M, Geisemeyer I, Haag ST, Schindler F, Schubert MC, Warta W (2014) Imaging techniques for quantitative silicon material and solar cell analysis. IEEE J Photovolt 4:1502–1510. doi: 10.1109/JPHOTOV.2014.2358795 CrossRefGoogle Scholar
  12. 12.
    Kirchartz T, Helbig A, Rau U (2008) Note on the interpretation of electroluminescence images using their spectral information. Sol Energ Mat Sol Cells 92:1621–1627. doi: 10.1016/j.solmat.2008.07.013 CrossRefGoogle Scholar
  13. 13.
    Kirchartz T, Rau U, Kurth M, Mattheis J, Werner JH (2007) Comparative study of electroluminescence from Cu(In, Ga)Se2 and Si solar cells. Thin Solid Films 515:6238–6242. doi: 10.1016/j.tsf.2006.12.105 CrossRefGoogle Scholar
  14. 14.
    Trupke T, Würfel P, Uhlendorf I, Lauermann I (1999) Electroluminescence of the dye-sensitized solar cell. J Phys Chem B 103:1905–1910. doi: 10.1021/jp982555a CrossRefGoogle Scholar
  15. 15.
    Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2012) Modelling of photo- and electroluminescence of hydrogenated microcrystalline silicon solar cells. Phys Status Solidi C 9:1963–1967. doi: 10.1002/pssc.201200428 CrossRefGoogle Scholar
  16. 16.
    Li Q, Wang W, Ma C, Zhu Z (2010) Detection of physical defects in solar cells by hyperspectral imaging technology. Opt Laser Technol 42:1010–1013. doi: 10.1016/j.optlastec.2010.01.022 CrossRefGoogle Scholar
  17. 17.
    Peloso MP, Lew JS, Hoex B, Aberle AG (2012) Line-imaging spectroscopy for characterisation of silicon wafer solar cells. Energy Procedia 15:171–178. doi: 10.1016/j.egypro.2012.02.020 CrossRefGoogle Scholar
  18. 18.
    Delamarre A, Lombez L, Guillemoles JF (2012) Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J Photon Energy 2:027004. doi: 10.1117/1.JPE.2.027004 CrossRefGoogle Scholar
  19. 19.
    Delamarre A (2013) Mapping solar cell parameters using hyperspectral imaging. SPIE newsroom. doi: 10.1117/2.1201304.004777
  20. 20.
    Abou-Ras D, Kirchartz T, Rau U (2011) Advanced characterization techniques for thin film solar cells. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  21. 21.
    Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In, Ga)Se2 and Si thin-film solar cells. Sol Energ Mat Sol Cells 126:95–130. doi: 10.1016/j.solmat.2014.04.018 CrossRefGoogle Scholar
  22. 22.
    Kirchartz T, Rau U (2007) Electroluminescence analysis of high efficiency Cu(In, Ga)Se2 solar cells. J Appl Phys 102:104510. doi: 10.1063/1.2817959 CrossRefGoogle Scholar
  23. 23.
    Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi: 10.1103/PhysRevB.76.085303 CrossRefGoogle Scholar
  24. 24.
    Kirchartz T, Rau U (2008) Detailed balance and reciprocity in solar cells. Phys Status Solidi A 205:2737–2751. doi: 10.1002/pssa.200880458 CrossRefGoogle Scholar
  25. 25.
    Kirchartz T, Mattheis J, Rau U (2008) Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys Rev B 78:235320. doi: 10.1103/PhysRevB.78.235320 CrossRefGoogle Scholar
  26. 26.
    Kirchartz T, Helbig A, Reetz W, Reuter M, Werner JH, Rau U (2009) Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells. Prog Photovolt Res Appl 17:394–402. doi: 10.1002/pip.895 CrossRefGoogle Scholar
  27. 27.
    Kirchartz T, Rau U, Hermle M, Bett AW, Helbig A, Werner JH (2008) Internal voltages in GaInP∕GaInAs∕Ge multijunction solar cells determined by electroluminescence measurements. Appl Phys Lett 92:123502. doi: 10.1063/1.2903101 CrossRefGoogle Scholar
  28. 28.
    Tran TMH, Pieters BE, Schneemann M, Müller TCM, Gerber A, Kirchartz T, Rau U (2013) Quantitative evaluation method for electroluminescence images of a-Si: H thin-film solar modules. Phys Status Solidi Rapid Res Lett 7:627–630. doi: 10.1002/pssr.201308039 CrossRefGoogle Scholar
  29. 29.
    Rau U (2012) Superposition and reciprocity in the electroluminescence and photoluminescence of solar cells. IEEE J Photovolt 2:169–172. doi: 10.1109/JPHOTOV.2011.2179018 CrossRefGoogle Scholar
  30. 30.
    Wong J, Green MA (2012) From junction to terminal: extended reciprocity relations in solar cell operation. Phys Rev B. doi: 10.1103/PhysRevB.85.235205

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations