Skip to main content

Design Considerations of Dexterous Telerobotics

  • Chapter
Control and Systems Engineering

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 27))

Abstract

Dexterous telerobotic systems are system in which the operation of a robotic hand is remotely controlled by the operator’s hand and finger motion. Such systems have been slower to develop than general telerobotic systems which do not utilize finger motion. This is due to the requirements and challenges placed by dexterous telerobotics on both the remote and the local sites. The current chapter presents the challenges and design considerations of dexterous telerobotic systems and discusses them in the context of different remote control methodologies, namely direct, bilateral, supervisory, and shared control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffin, W.B., Provancher, W.R., Cutkosky, M.R.: Feedback strategies for telemanipulation with shared control of object handling forces. Presence: Teleoperators and Virtual Environments 14(6), 720–731 (2005)

    Article  Google Scholar 

  2. Hu, H., Li, J., Xie, Z., Liu, B.W.H., Hirzinger, G.: A robot arm/hand teleoperation system with telepresence and shared control. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA (2005)

    Google Scholar 

  3. Jau, B.M.: Dexterous telemanipulation with four fingered hand system. In: IEEE International Conference on Robotics and Automation, Nagoya, Japan (May 1995)

    Google Scholar 

  4. Turner, M.L., Findley, R.P., Griffin, W.B., Cutkosky, M.R., Gomez, D.H.: Development and testing of a telemanipulation system with arm and hand motion. In: ASME IMECE Conference on Haptic Interfaces for Virtual Environments and Teleoperator System Symposium, Orlando, Florida (November 2000)

    Google Scholar 

  5. Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human environments. IEEE Robotics & Automation Magazine, 20–29 (2007)

    Google Scholar 

  6. Burke, J.L., Murphy, R.R., Rogers, E., Lumelsky, V.J., Scholtz, J.: Final report for the DARPA/NSF interdisciplinary study on human–robot interaction. IEEE Transactions Systems, Man, and Cybernetics—Part C: Applications And Reviews 34(2), 103–112 (2004)

    Article  Google Scholar 

  7. Niemeyer, G., Preusche, C., Hirzinger, G.: Telerobotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, Springer, Berlin (2008)

    Google Scholar 

  8. Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds.): Advances in Telerobotics, Springer Tracts in Advanced Robotics. Springer, Berlin (2007)

    Google Scholar 

  9. Hokayem, P.F., Spong, M.W.: Bilateral Teleoperation: An historical survey. Automatica 42, 2035–2057 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. MIT Press, Cambridge (1992)

    Google Scholar 

  11. Marescaux, J., Leroy, J., Rubino, F., Smith, M., Vix, M., Simone, M., Mutter, D.: Transcontinental Robot-Assisted Remote Telesurgery: Feasibility and Potential Applications. Ann Surg. Apr. 235(4), 487–492 (2002)

    Article  Google Scholar 

  12. Stern, H., Wachs, J., Edan, Y.: A Method for Selection of Optimal Hand Gesture Vocabularies. In: Sales Dias, M., Gibet, S., Wanderley, M.M., Bastos, R. (eds.) GW 2007. LNCS (LNAI), vol. 5085, pp. 57–68. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Berman, S., Stern, H.: Sensors for Gesture Recognition Systems. IEEE Transactions on Systems, Man, and Cybernetics-Part C 42(3), 277–290 (2012)

    Article  Google Scholar 

  14. Stern, H., Smilansky, K., Berman, S.: Depth Based Dual Component Dynamic Gesture Recognition. In: The International Conference on Image Processing, Computer Vision, and Pattern Recognition IPCV 2013, Nevada, USA, July 22-25 (2013)

    Google Scholar 

  15. Jeannerod, M.: Intersegmental coordination during reaching at natural visual objects. In: Long, J., Baddeley, A. (eds.) Attention and Performance IX, pp. 153–169. Lawrence Erlbaum Associates, Mahwah, Mahwah (1981)

    Google Scholar 

  16. Marteniuk, R.G., MacKenzie, C.L., Jeannerod, M., Athenes, S., Dugas, C.: Constraints on human arm movement trajectories. Canadian Journal of Psychology 41(3), 365–378 (1987)

    Article  Google Scholar 

  17. Friedman, J., Flash, T.: Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43(3), 444–460 (2007)

    Article  Google Scholar 

  18. Murata, A., Gallese, V., Luppino, G., Kaseda, M., Sakata, H.: Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology 83(5), 2580–2601 (2000)

    Google Scholar 

  19. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., Matelli, M.: Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research 71(3), 491–507 (1988)

    Google Scholar 

  20. Flach, J.M., Holden, J.G.: The Reality of Experience: Gibson’s Way. Presence: Teleoperators and Virtual Environments 7(1), 90–95 (1998)

    Article  Google Scholar 

  21. Slater, M., Wilbur, S.: A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments 6, 603–616 (1997)

    Google Scholar 

  22. IJsselsteijn, W.A., Reiner, M.: On the importance of reliable real-time sensorimotor dependencies for establishing telepresence, Presence, Valencia, Spain, October 13-15, 2004, pp. 298–304 (2004)

    Google Scholar 

  23. IJsselsteijn, W.A., de Kort, Y.A., Haans, A.: Is this my hand i see before me? The rubber hand illusion in reality, virtual reality, and mixed reality. Presence: Teleoperators and Virtual Environments 15(4), 455–464 (2006)

    Article  Google Scholar 

  24. Botvinick, M., Cohen, J.: Rubber hands ‘feel’ touch that eyes see. Nature 391(6669), 756 (1998)

    Article  Google Scholar 

  25. Armel, K.C., Ramachandran, V.S.: Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London B 270, 1499–1506 (2003)

    Article  Google Scholar 

  26. Reiner, M.: The Role of haptics in immersive telecommunication environments. IEEE Transactions on Circuits & Systems for Video Technology 14(3), 392–401 (2004)

    Article  Google Scholar 

  27. Lindeman, R.W., Templeman, J.N.: Vibrotactile feedback for handling virtual contact in immersive virtual environments, Usability Evaluation and Interface Design. In: Smith, M.J., Salvendy, G., Harris, D., Koubek, R.J. (eds.) Cognitive Engineering, Intelligent Agents and Virtual reality, pp. 21–25 (2001)

    Google Scholar 

  28. Kontarinis, D.A., Howe, R.D.: Tactile Display of High-Frequency Information in Teleoperation and Virtual Environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)

    Google Scholar 

  29. Campbell, C.L., Peters, R.A., Bodenheimer, R.E., Bluethmann, W.J., Huber, E., Ambrose, R.O.: Superpositioning of Behaviors Learned Through Teleoperation. IEEE Transactions on Robotics 22(1), 79–91 (2006)

    Article  Google Scholar 

  30. Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments 4(4), 387–402 (1995)

    Google Scholar 

  31. Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficult road towards simplicity. IEEE Transactions on Robotics and Automation 16(6), 652–662 (2000)

    Article  Google Scholar 

  32. Pons, J.L., Ceres, R., Pfeiffer, F.: Multifingered dexterous robotics hand design and control: a review. Robotica 17, 661–674 (1999)

    Article  Google Scholar 

  33. Lovchik, C.S., Diftler, M.A.: The Robonaut hand: a dexterous robot hand for space. In: IEEE Conference on Robotics and Automation (ICRA 1999), vol. 2, pp. 907–912 (1999)

    Google Scholar 

  34. Wilkinson, D.D., Weghe, M.V., Matsuoka, Y.: An extensor mechanism for an anatomical robotic hand. In: IEEE Conference on Robotics and Automation (ICRA 2003), vol. 1, pp. 238–243 (2003)

    Google Scholar 

  35. Howe, R.D.: A force-reflecting teleoperated hand system for the study of tactile sensing in precision manipulation. In: IEEE Conference on Robotics and Automation (ICRA), Nice, France (1992)

    Google Scholar 

  36. Kheddar, A.: Teleoperation based on the hidden robot concept. IEEE Trans. SMC – Part A 31(1), 1–13 (2001)

    Google Scholar 

  37. Ekvall, S., Kragic, D.: Interactive grasp learning based on human demonstration. In: IEEE Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, April 26-May 1, vol. 4 (2004)

    Google Scholar 

  38. Arbib, M.A., Iberall, T., Lyons, D.: Coordinated control programs for control of the hands. Hand function and the neocortex. Experimental Brain Research 10, 111–129 (1985)

    Article  Google Scholar 

  39. Iberall, T.: Human prehension and dexterous robot hands. International Journal of Robotics Research 16, 285–299 (1997)

    Article  Google Scholar 

  40. Griffin, W.B., Findley, R.P., Turner, M.L., Cutkosky, M.R.: Calibration and mapping of a human hand for dexterous telemanipulation. In: ASME IMECE Haptic Interfaces for Virtual Environments and Teleoperator System Symposium (2000)

    Google Scholar 

  41. Berman, S., Friedman, J., Flash, T.: Object-action abstraction for teleportation. In: IEEE Systems Man and Cybernetics (SMC) Conference, Hawaii (October 2005)

    Google Scholar 

  42. Berman, S., Friedman, J., Bakır, G., Flash, T.: Action identification for teleoperation based on object - action abstraction. In: IEEE SMC International Conference on Distributed Human-Machine Systems (DHMS), Greece (March 2008)

    Google Scholar 

  43. Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Inc., New Jersy (1979)

    Google Scholar 

  44. Roke, C., Melhuish, C., Pipe, T., Drury, D., Chorley, C.: Lump localisation through a deformation-based tactile feedback system using a biologically inspired finger sensor. Robotics and Autonomous Systems 60(11), 1442–1448 (2012)

    Article  Google Scholar 

  45. Wettels, N., Fishel, J.A., Loeb, G.E.: Multimodal Tactile Sensor, the Human Hand as an Inspiration for Robot Hand Development. In: Balasubramanian, R., Santos, V.J. (eds.) Springer Tracts in Advanced Robotics (STAR) series, Springer, Heidelberg (2014)

    Google Scholar 

  46. Kravits, M., Shapiro, A., Berman, S.: Parametric Compliant contact model for human finger. In: The 7th Computational Motor Control Workshop (CMCW), Beer-Sheva. Israel (2011)

    Google Scholar 

  47. Nisky, I., Mussa-Ivaldi, F.A., Karniel, A.: Analytical Study of Perceptual and Motor Transparency in Bilateral Teleoperation. IEEE Transactions on Human-Machine Systems 43(6), 570–582 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berman, S. (2015). Design Considerations of Dexterous Telerobotics. In: El-Osery, A., Prevost, J. (eds) Control and Systems Engineering. Studies in Systems, Decision and Control, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-14636-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14636-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14635-5

  • Online ISBN: 978-3-319-14636-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics