Skip to main content

Laboratory Evaluations in Inherited Metabolic Diseases

  • Chapter
Nutrition Management of Inherited Metabolic Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. J Inherit Metab Dis. 2006;29(2–3):261–74.

    Article  PubMed  Google Scholar 

  2. Carmody JB, Norwood VF. A clinical approach to paediatric acid-base disorders. Postgrad Med J. 2012;88(1037):143–51.

    Article  CAS  PubMed  Google Scholar 

  3. Kraut JA, Madias NE. Approach to patients with acid-base disorders. Respir Care. 2001;46(4):392–403.

    CAS  PubMed  Google Scholar 

  4. Kraut JA, Madias NE. Differential diagnosis of nongap metabolic acidosis: value of a systematic approach. Clin J Am Soc Nephrol. 2012;7(4):671–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Enns GM. Neurologic damage and neurocognitive dysfunction in urea cycle disorders. Semin Pediatr Neurol. 2008;15(3):132–9.

    Article  PubMed  Google Scholar 

  6. Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis. 2013;36(4):595–612.

    Article  CAS  PubMed  Google Scholar 

  7. Gropman AL, et al. Urea cycle defects and hyperammonemia: effects on functional imaging. Metab Brain Dis. 2013;28(2):269–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gauthier N, et al. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern. PLoS One. 2013;8(7):e60581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Baruteau J, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis. 2013;36(5):795–803.

    Article  CAS  PubMed  Google Scholar 

  11. Batshaw ML, et al. Neurologic outcome in premature infants with transient asymptomatic hyperammonemia. J Pediatr. 1986;108(2):271–5.

    Article  CAS  PubMed  Google Scholar 

  12. Saudubray JM, et al. Genetic hypoglycaemia in infancy and childhood: pathophysiology and diagnosis. J Inherit Metab Dis. 2000;23(3):197–214.

    Article  CAS  PubMed  Google Scholar 

  13. Ficicioglu C, et al. Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J Pediatr. 2010;156(3):492–4.

    Article  CAS  PubMed  Google Scholar 

  14. Sass JO. Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis. 2012;35(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lamers KJ, et al. The concentration of blood components related to fuel metabolism during prolonged fasting in children. Clin Chim Acta. 1985;152(1–2):155–63.

    Article  CAS  PubMed  Google Scholar 

  16. Bonnefont JP, et al. The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr. 1990;150(2):80–5.

    Article  CAS  PubMed  Google Scholar 

  17. Adeva-Andany M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17C:76–100.

    Article  Google Scholar 

  18. Adeva M, et al. Enzymes involved in l-lactate metabolism in humans. Mitochondrion. 2013;13(6):615–29.

    Article  CAS  PubMed  Google Scholar 

  19. van den Berghe G. Disorders of gluconeogenesis. J Inherit Metab Dis. 1996;19(4):470–7.

    Article  PubMed  Google Scholar 

  20. Robinson BH. Lactic acidemia and mitochondrial disease. Mol Genet Metab. 2006;89(1–2):3–13.

    Article  CAS  PubMed  Google Scholar 

  21. Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142C(2):77–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stanley CA. Carnitine deficiency disorders in children. Ann N Y Acad Sci. 2004;1033:42–51.

    Article  CAS  PubMed  Google Scholar 

  23. Santra S, Hendriksz C. How to use acylcarnitine profiles to help diagnose inborn errors of metabolism. Arch Dis Child Educ Pract Ed. 2010;95(5):151–6.

    Article  CAS  PubMed  Google Scholar 

  24. Millington DS, et al. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis. 1990;13(3):321–4.

    Article  CAS  PubMed  Google Scholar 

  25. Van Hove JL, et al. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet. 1993;52(5):958–66.

    PubMed Central  PubMed  Google Scholar 

  26. Rinaldo P, Cowan TM, Matern D. Acylcarnitine profile analysis. Genet Med. 2008;10(2):151–6.

    Article  PubMed  Google Scholar 

  27. Centerwall WR, Centerwall SA. Phenylketonuria (FOLLING’s disease). The story of its discovery. J Hist Med Allied Sci. 1961;16:292–6.

    Article  CAS  PubMed  Google Scholar 

  28. Guthrie R. Screening for phenylketonuria. Triangle. 1969;9(3):104–9.

    CAS  PubMed  Google Scholar 

  29. Nasset ES, et al. Amino acids in human blood plasma after single meals of meat, oil, sucrose and whiskey. J Nutr. 1979;109(4):621–30.

    CAS  PubMed  Google Scholar 

  30. Goodman SI. An introduction to gas chromatography-mass spectrometry and the inherited organic acidemias. Am J Hum Genet. 1980;32(6):781–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Pierpont ME, et al. Myocardial carnitine in end-stage congestive heart failure. Am J Cardiol. 1989;64(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  32. Tuchman M, et al. Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mutat. 2002;19(2):93–107.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, et al. Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab. 2012;106(2):221–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis R. Coughlin II MS, MBe, CGC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coughlin, C.R. (2015). Laboratory Evaluations in Inherited Metabolic Diseases. In: Bernstein, L., Rohr, F., Helm, J. (eds) Nutrition Management of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-14621-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14621-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14620-1

  • Online ISBN: 978-3-319-14621-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics