Skip to main content

Abstract

  • Protein is a critical part of the diet in individuals with inherited metabolic diseases (IMD).

  • Current Dietary Reference Intakes may underestimate protein needs for individuals with IMD.

  • Low “whole” protein diets without the use of amino acid-based medical foods may not contain sufficient protein for majority of individuals with an inherited metabolic disease.

  • Distributing protein intake throughout the day facilitates anabolism.

  • Protein requirements for catch-up growth should be calculated as adjusted weight for age and not actual weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gropper SS, Acosta PB. Effect of simultaneous ingestion of L-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. JPEN J Parenter Enteral Nutr. 1991;15(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  2. Hermann ME BH, Keller M, Moech E, Helge H. Dependence of the utilization of a phenylalanine-free amino acid mixture on different amounts of single dose ingested. A case report. Eur J Pediatr. 1994;153:501–3.

    Article  Google Scholar 

  3. Pennings B, et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011;93(5):997–1005.

    Article  CAS  PubMed  Google Scholar 

  4. Ten Have GA, et al. Absorption kinetics of amino acids, peptides, and intact proteins. Int J Sport Nutr Exerc Metab. 2007;17(Suppl):S23–36.

    PubMed  Google Scholar 

  5. Waterlow JC. Protein turnover with special reference to man. Q J Exp Physiol. 1984;69(3):409–38.

    Article  CAS  PubMed  Google Scholar 

  6. Young VR, et al. Total human body protein synthesis in relation to protein requirements at various ages. Nature. 1975;253(5488):192–4.

    Article  CAS  PubMed  Google Scholar 

  7. Butte NF, et al. Body composition during the first 2 years of life: an updated reference. Pediatr Res. 2000;47(5):578–85.

    Article  CAS  PubMed  Google Scholar 

  8. Institute of Medicine (U.S.), Panel on Macronutrients. and Institute of Medicine (U.S.), Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academies Press; 2005. xxv, 1331 p.

    Google Scholar 

  9. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283:E648–57.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson J, Wilson G. Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr. 2006;3(1):7–27.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pasiakos SM, et al. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr. 2011;94(3):809–18.

    Article  CAS  PubMed  Google Scholar 

  12. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci. 1997;94:14930–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans and assessed by compartmental modeling. J Nutr. 2001;132:125–33.

    Google Scholar 

  14. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B. The digestions rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280:E340–8.

    CAS  PubMed  Google Scholar 

  15. Daenzer M, Petzke K, Bequette BJ, Metges C. Whole-body nitrogen and splanchnic amino acid metabolism differ in rats fed mixed diets containing casein or Its corresponding amino acid mixture. J Nutr. 2001;131:1965–72.

    CAS  PubMed  Google Scholar 

  16. Monchi M, Rérat AA. Comparison of net protein utilization of milk protein mild enzymatic hydrolysates and free amino acid mixtures with a close pattern in the rat. JPEN J Parenter Enteral Nutr. 1993;17(4):355–63.

    Article  CAS  PubMed  Google Scholar 

  17. Allen JR, et al. Body protein in prepubertal children with phenylketonuria. Eur J Clin Nutr. 1996;50(3):178–86.

    CAS  PubMed  Google Scholar 

  18. Institute of Medicine, F.a.N.B. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Washington, DC: N.A. Press, Institute of Medicine; 2002.

    Google Scholar 

  19. Mariotti F, Mahé S, Luengo C, Benamouzig R, Tome D. Postprandial modulation of dietary and whole-body nitrogen utilization by carbohydrates in humans. Am J Clin Nutr. 2000;72:954–62.

    CAS  PubMed  Google Scholar 

  20. Gaudichon C, Mahé S, Benamouzig R, Luengo C, Fouillet H, Dare S, Oycke MV, Ferriere F, Ratureau J, Tome D. Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans. J Nutr. 1999;129:890–5.

    CAS  PubMed  Google Scholar 

  21. Welle S, Matthews D, Campbell RG, Sreekumaran Nair K. Stimulation of protein turnover by carbohydrate overfeeding in men. Endocrinol Metab. 1989;209:E413–7.

    Google Scholar 

  22. Pratt EL, Snyderman S, Cheung MW, Norton P, Holt IE. The threonine requirement of the normal infant. J Nutr. 1984;11:231–52.

    Google Scholar 

  23. Rose WC, Wixom R. The amino acid requirements of man: XIV. The sparing effect of tyrosine on the phenylalanine requirement. J Biol Chem. 1955;217:95–102.

    CAS  PubMed  Google Scholar 

  24. Thomas JA, Bernstein LE, et al. Apparent decreased energy requirements in children with organic acidemias: preliminary observations. J Am Diet Assoc. 2000;100(9):1074–6.

    Article  CAS  PubMed  Google Scholar 

  25. Layman DK. Dietary guidelines should reflect new understandings about adult protein needs. Nutr Metab (Lond). 2009;6:12.

    Article  Google Scholar 

  26. Mamerow MM, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr. 2014;144(6):876–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. MacDonald A, Rylance G, Davies P, Asplin D, Hall SK, Booth IW. Administration of protein substitute and quality of control in phenylketonuria: a randomized study. J Inherit Metab Dis. 2003;26(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  28. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Paddon-Jones D, Leidy H. Dietary protein and muscle in older persons. Curr Opin Clin Nutr Metab Care. 2014;17(1):5–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. MacDonald A, Rylance G, Hall SK, Asplin D, Booth IW. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch Dis Child. 1996;74:412–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Trumbo P, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30.

    Article  PubMed  Google Scholar 

  32. Elango R, Ball RO, Pencharz PB. Recent advances in determining protein and amino acid requirements in humans. Br J Nutr. 2012;108 Suppl 2:S22–30.

    Article  CAS  PubMed  Google Scholar 

  33. Humayun MA, Elango R, Ball RO, Pencharz PB. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am J Clin Nutr. 2007;86(4):995–1002.

    CAS  PubMed  Google Scholar 

  34. Elango R, Ball RO, Pencharz PB. Indicator amino acid oxidation: concept and application. J Nutr. 2008;138:243–6.

    CAS  PubMed  Google Scholar 

  35. van Rijn M, et al. Protein metabolism in adult patients with phenylketonuria. Nutrition. 2007;23(6):445–53.

    Article  PubMed  Google Scholar 

  36. Fulgoni V. Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr. 2008;87(suppl):1554S–7.

    CAS  PubMed  Google Scholar 

  37. EFSA Panel on Dietetic Products, N.a.A.N. Scientific opinion on dietary reference values for protein. Eur Food Saf Authority. 2012;10(2):66.

    Google Scholar 

  38. Humphrey M, Truby H, Boneh A. New ways of defining protein and energy relationships in inborn errors of metabolism. Mol Genet Metab. 2014;112(4):247–58.

    Article  CAS  PubMed  Google Scholar 

  39. Acosta PB. Nutrition management of patients with inherited metabolic disorders. Acosta PB, editor. Sudbury: Jones and Bartlett Publishers, LLC; 2010. p. 476.

    Google Scholar 

  40. Acosta P, Yannicelli S, editors. Nutrition protocols updated for the US. 4th ed. Columbus: A. Laboratories; 2001.

    Google Scholar 

  41. Vockley J, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.

    Article  CAS  PubMed  Google Scholar 

  42. Singh RH, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med. 2014;16(2):121–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Acosta PB, et al. Iron status of children with phenylketonuria undergoing nutrition therapy assessed by transferrin receptors. Genet Med. 2004;6(2):96–101.

    Article  CAS  PubMed  Google Scholar 

  44. Yannicelli S, et al. Improved growth and nutrition status in children with methylmalonic or propionic acidemia fed an elemental medical food. Mol Genet Metab. 2003;80(1–2):181–8.

    Article  CAS  PubMed  Google Scholar 

  45. van der Meer SB, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr. 1994;125(6 Pt 1):903–8.

    Article  PubMed  Google Scholar 

  46. Yannicelli S. Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis. 2006;29(2–3):281–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hanley WB, Linsao L, Davidson W, Moes CAF. Malnutrition with early treatment of phenylketonuria. Pediatr Res. 1970;4:318–27.

    Article  CAS  PubMed  Google Scholar 

  48. Dhondt JL, et al. Physical growth in patients with phenylketonuria. J Inherit Metab Dis. 1995;18(2):135–7.

    Article  CAS  PubMed  Google Scholar 

  49. Verkerk PH, et al. Impaired prenatal and postnatal growth in Dutch patients with phenylketonuria. The National PKU Steering Committee. Arch Dis Child. 1994;71(2):114–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. de Baulny HO, et al. Methylmalonic and propionic acidaemias: management and outcome. J Inherit Metab Dis. 2005;28(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  51. van Spronsen FJ, et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis. 2009;32(1):27–31.

    Article  PubMed  Google Scholar 

  52. Möller HE, Ullrich K, Weglage J. In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr. 2000;159 Suppl 2:S121–5.

    Article  PubMed  Google Scholar 

  53. Weglage J, et al. Individual blood-brain barrier phenylalanine transport in siblings with classical phenylketonuria. J Inherit Metab Dis. 2002;25(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  54. Evans S, Alroqaiba N. Feeding difficulties in children with inherited metabolic disorders: a pilot study. J Hum Nutr Diet. 2012;25:209–16.

    Article  CAS  PubMed  Google Scholar 

  55. World Health Organization, Food and Agriculture Organization of the United Nations, United Nations University. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation (WHO Technical Report Series 935); 2007.

    Google Scholar 

  56. Millward DJ. Macronutrient intakes as determinants of dietary protein and amino acid adequacy. J Nutr. 2004;134(6 Suppl):1588S–96.

    CAS  PubMed  Google Scholar 

  57. Garza C, Scrimshaw NS, Young VR. Human protein requirements: the effect of variations in energy intake within the maintenance range. Am J Clin Nutr. 1976;29(3):280–7.

    CAS  PubMed  Google Scholar 

  58. Garza C, Scrimshaw NS, Young VR. Human protein requirements: evaluation of the 1973 FAO/WHO safe level of protein intake for young men at high energy intakes. Br J Nutr. 1977;37(3):403–20.

    Article  CAS  PubMed  Google Scholar 

  59. Krieger JW, et al. Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am J Clin Nutr. 2006;83(2):260–74.

    CAS  PubMed  Google Scholar 

  60. MacLean WC, Graham GG. The effect of level of protein intake in isoenergetic diets on energy utilization. Am J Clin Nutr. 1979;32(7):1381–7.

    CAS  PubMed  Google Scholar 

  61. Inoue G, Fujita Y, Niiyama Y. Studies on protein requirements of young men fed egg protein and rice protein with excess and maintenance energy intakes. J Nutr. 1973;103(12):1673–87.

    CAS  PubMed  Google Scholar 

  62. Kishi K, Miyatani S, Inoue G. Requirement and utilization of egg protein by Japanese young men with marginal intakes of energy. J Nutr. 1978;108(4):658–69.

    CAS  PubMed  Google Scholar 

  63. Fomon SJ, et al. What is the safe protein-energy ratio for infant formulas? Am J Clin Nutr. 1995;62(2):358–63.

    CAS  PubMed  Google Scholar 

  64. Dewey KG, et al. Protein requirements of infants and children. Eur J Clin Nutr. 1996;50 Suppl 1:S119–47. discussion S147-50.

    PubMed  Google Scholar 

  65. Fomon SJ, et al. Infant formula with protein-energy ratio of 1.7 g/100 kcal is adequate but may not be safe. J Pediatr Gastroenterol Nutr. 1999;28(5):495–501.

    Article  CAS  PubMed  Google Scholar 

  66. Kashyap S. Enteral intake for very low birth weight infants: what should the composition be? Semin Perinatol. 2007;31(2):74–82.

    Article  PubMed  Google Scholar 

  67. Agostoni C, et al. How much protein is safe? Int J Obes (Lond). 2005;29 Suppl 2:S8–13.

    Article  CAS  Google Scholar 

  68. Heaney RP, Layman DK. Amount and type of protein influences bone health. Am J Clin Nutr. 2008;87(5):1567S–70.

    CAS  PubMed  Google Scholar 

  69. Eisenstein J, et al. High-protein weight-loss diets: are they safe and do they work? A review of the experimental and epidemiologic data. Nutr Rev. 2002;60(7 Pt 1):189–200.

    Article  PubMed  Google Scholar 

  70. Astrup A, Meinert Larsen T, Harper A. Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet. 2004;364(9437):897–9.

    Article  PubMed  Google Scholar 

  71. Batterham M, et al. High-protein meals may benefit fat oxidation and energy expenditure in individuals with higher body fat. Nutr Diet. 2008;65(4):246–52.

    Article  Google Scholar 

  72. Touati G, et al. Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture. J Inherit Metab Dis. 2006;29(2–3):288–98.

    Article  CAS  PubMed  Google Scholar 

  73. Pencharz PB. Assessment of protein nutritional status in children. Pediatr Blood Cancer. 2008;50(2 Suppl):445–6. discussion 451.

    Article  PubMed  Google Scholar 

  74. Potter MA, Luxton G. Prealbumin measurement as a screening tool for protein calorie malnutrition in emergency hospital admissions: a pilot study. Clin Invest Med. 1999;22(2):44–52.

    CAS  PubMed  Google Scholar 

  75. Rocha JC, et al. The use of prealbumin concentration as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab. 2010;56(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  76. Arnold GL, et al. Protein insufficiency and linear growth restriction in phenylketonuria. J Pediatr. 2002;141(2):243–6.

    Article  CAS  PubMed  Google Scholar 

  77. Aldamiz-Echevarria L, et al. Anthropometric characteristics and nutrition in a cohort of PAH-deficient patients. Clin Nutr. 2014;33(4):702–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Yannicelli PhD, RD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yannicelli, S. (2015). Protein Requirements in Inherited Metabolic Diseases. In: Bernstein, L., Rohr, F., Helm, J. (eds) Nutrition Management of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-14621-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14621-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14620-1

  • Online ISBN: 978-3-319-14621-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics