Advertisement

Marked Point Process Model for Curvilinear Structures Extraction

  • Seong-Gyun Jeong
  • Yuliya Tarabalka
  • Josiane Zerubia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8932)

Abstract

In this paper, we propose a new marked point process (MPP) model and the associated optimization technique to extract curvilinear structures. Given an image, we compute the intensity variance and rotated gradient magnitude along the line segment. We constrain high level shape priors of the line segments to obtain smoothly connected line configuration. The optimization technique consists of two steps to reduce the significance of the parameter selection in our MPP model. We employ Monte Carlo sampler with delayed rejection to collect line hypotheses over different parameter spaces. Then, we maximize the consensus among line detection results to reconstruct the most plausible curvilinear structures without parameter estimation process. Experimental results show that the algorithm effectively localizes curvilinear structures on a wide range of datasets.

Keywords

curvilinear structure extraction marked point process Monte Carlo sampling with delayed rejection aggregation algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbeáez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE TPAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Batool, N., Chellappa, R.: Modeling and detection of wrinkles in aging human faces using marked point processes. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 178–188. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Celeux, G., Chauveau, D., Diebolt, J.: Stochastic versions of the EM algorithm: an experimental study in the mixture case. J. Statist. Comput. Simulation 55(4), 287–314 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chambon, S., Gourraud, C., Moliard, J.M., Nicolle, P.: Road crack extraction with adapted filtering and Markov model-based segmentation. In: VISAPP(2), pp. 81–90 (May 2010)Google Scholar
  6. 6.
    Chatelain, F., Descombes, X., Lafarge, F., Lantuejoul, C., Mallet, C., Minlos, R., Schmitt, M., Sigelle, M., Stoica, R., Zhizhina, E.: Stochastic geometry for image analysis. Wiley-ISTE (2012)Google Scholar
  7. 7.
    Descombes, X., Zerubia, J.: Marked point process in image analysis. IEEE SPM 19(5), 77–84 (2002)CrossRefGoogle Scholar
  8. 8.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE TPAMI 13(9), 891–906 (1991)CrossRefGoogle Scholar
  10. 10.
    Gamal-Eldin, A., Descombes, X., Charpiat, G., Zerubia, J.: Multiple birth and cut algorithm for point process optimization. In: SITIS (2010)Google Scholar
  11. 11.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov chain Monte Carlo in practice. Chapman & Hall/CRC (1995)Google Scholar
  12. 12.
    González, G., Türetken, E., Fleuret, F., Fua, P.: Delineating trees in noisy 2D images and 3D image-stacks. In: CVPR, pp. 2799–2806 (June 2010)Google Scholar
  13. 13.
    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Green, P.J., Mira, A.: Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88(4), 1035–1053 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE TPAMI 26(8), 1007–1019 (2004)CrossRefGoogle Scholar
  16. 16.
    Jeong, S.G., Tarabalka, Y., Zerubia, J.: Marked point process model for facial wrinkle detection. To appear ICIP (October 2014)Google Scholar
  17. 17.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE TPAMI 27(10), 1568–1579 (2005)CrossRefGoogle Scholar
  19. 19.
    Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Van Lieshout, M.N.M.: Markov point processes and their application. Imperial College Press (2000)Google Scholar
  21. 21.
    Moller, J., Waagepetersen, R.P.: Statistical inference and simulation for spatial point processes. Chapman & Hall/CRC (2003)Google Scholar
  22. 22.
    Predoehl, A., Barnard, K.: A statistical model for recreational trails in aerial images. In: CVPR, pp. 337–344 (June 2013)Google Scholar
  23. 23.
    Robert, C.P., Casella, G.: Monte Carlo statistical methods. Springer (2004)Google Scholar
  24. 24.
    Schlecht, J., Barnard, K., Spriggs, E., Pryor, B.: Inferring grammar-based structure models from 3D microscopy data. In: CVPR, pp. 1–8 (June 2007)Google Scholar
  25. 25.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE TMI 23(4), 501–509 (2004)Google Scholar
  26. 26.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic geometry and its applications. Wiley (1987)Google Scholar
  27. 27.
    Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image and Vision Computing 25(4), 416–425 (2007)CrossRefGoogle Scholar
  28. 28.
    Tu, Z., Zhu, S.C.: Parsing images into regions, curves, and curve groups. IJCV 69(2), 223–249 (2006)CrossRefGoogle Scholar
  29. 29.
    Türetken, E., Benmansour, F., Andres, B., Pfister, H., Fua, P.: Reconstructing loopy curvilinear structures using integer programming. In: CVPR, pp. 1822–1829 (June 2013)Google Scholar
  30. 30.
    Valero, S., Chanussot, J., Bendiktsson, J., Talbot, H., Waske, B.: Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images. Pattern Recognition Lett. 31(10), 1120–1127 (2010)CrossRefGoogle Scholar
  31. 31.
    Verdié, Y., Lafarge, F.: Detecting parametric objects in large scenes by Monte Carlo sampling. IJCV 106(1), 57–75 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Seong-Gyun Jeong
    • 1
  • Yuliya Tarabalka
    • 1
  • Josiane Zerubia
    • 1
  1. 1.Ayin teamInriaSophia-AntipolisFrance

Personalised recommendations