Skip to main content

Mapping the Energy Landscape of Non-convex Optimization Problems

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Abstract

An energy landscape map (ELM) characterizes and visualizes an energy function with a tree structure, in which each leaf node represents a local minimum and each non-leaf node represents the barrier between adjacent energy basins. We demonstrate the utility of ELMs in analyzing non-convex energy minimization problems with two case studies: clustering with Gaussian mixture models and learning mixtures of Bernoulli templates from images. By plotting the ELMs, we are able to visualize the impact of different problem settings on the energy landscape as well as to examine and compare the behaviors of different learning algorithms on the ELMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbu, A., Zhu, S.C.: Generalizing swendsen-wang to sampling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1239–1253 (2005)

    Article  Google Scholar 

  2. Becker, O.M., Karplus, M.: The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics. The Journal of Chemical Physics 106(4), 1495–1517 (1997)

    Article  Google Scholar 

  3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  4. Dasgupta, S., Schulman, L.J.: A two-round variant of em for gaussian mixtures. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 152–159. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  5. Gelman, A., Rubin, D.B.: Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4), 457–472 (1992)

    Article  Google Scholar 

  6. Liang, F.: Generalized wang-landau algorithm for monte carlo computation. Journal of the American Statistical Association 100, 1311–1327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liang, F.: A generalized wang-landau algorithm for monte carlo computation. JASA. Journal of the American Statistical Association 100(472), 1311–1327 (2005)

    Article  MATH  Google Scholar 

  8. Pavlovskaia, M., Tu, K., Zhu, S.C.: Mapping energy landscapes of non-convex learning problems. arXiv preprint arXiv:1410.0576 (2014)

    Google Scholar 

  9. Potts, R.B.: Some Generalized Order-Disorder Transformation. Transformations, Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  10. Samdani, R., Chang, M.W., Roth, D.: Unified expectation maximization. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 688–698. Association for Computational Linguistics (2012)

    Google Scholar 

  11. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters 58(2), 86–88 (1987)

    Article  Google Scholar 

  12. Tu, K., Honavar, V.: Unambiguity regularization for unsupervised learning of probabilistic grammars. In: Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing and Natural Language Learning, EMNLP-CoNLL 2012 (2012)

    Google Scholar 

  13. Wang, F., Landaul, D.: Efficient multi-range random-walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001)

    Article  Google Scholar 

  14. Zhou, Q.: Random walk over basins of attraction to construct ising energy landscapes. Phys. Rev. Lett. 106, 180602 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pavlovskaia, M., Tu, K., Zhu, SC. (2015). Mapping the Energy Landscape of Non-convex Optimization Problems. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics