Skip to main content

A Compact Linear Programming Relaxation for Binary Sub-modular MRF

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

Direct linear programming (LP) solution to binary sub-modular MRF energy has recently been promoted because i) the solution is identical to the solution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in incorporation of constraints. Nevertheless, the conventional LP relaxation for MRF incurs a large number of auxiliary variables and constraints, resulting in expensive consumption in memory and computation. In this work, we propose to approximate the solution of the conventional LP at a significantly smaller complexity by solving a novel compact LP model. We further establish a tightenable approximation bound between our LP model and the conventional LP model. Our LP model is obtained by linearizing a novel l 1-norm energy derived from the Cholesky factorization of the quadratic form of the MRF energy, and it contains significantly fewer variables and constraints compared to the conventional LP relaxation. We also show that our model is closely related to the total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. The latter property is very desirable in most of the imaging and vision applications. In the experiments, our method achieves similarly satisfactory results compared to the conventional LP, yet it requires significantly smaller computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. TPAMI 29, 1274–1279 (2007)

    Article  Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23, 1222–1239 (2001)

    Article  Google Scholar 

  3. Grady, L.: Random walks for image segmentation. TPAMI 28, 1768–1783 (2006)

    Article  Google Scholar 

  4. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: CVPR. IEEE (2007)

    Google Scholar 

  5. Li, H., Shen, C.: Interactive color image segmentation with linear programming. Machine Vision and Applications 21, 403–412 (2010)

    Article  Google Scholar 

  6. Bhusnurmath, A., Taylor, C.J.: Graph cuts via l_1 norm minimization. TPAMI 30, 1866–1871 (2008)

    Article  Google Scholar 

  7. Derigs, U., Meier, W.: Implementing goldberg’s max-flow-algorithm — a computational investigation. Zeitschrift für Operations Research 33, 383–403 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Jamriska, O., Sykora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In: IEEE CVPR, pp. 3673–3680 (2012)

    Google Scholar 

  9. Lempitsky, V.S., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV (2009)

    Google Scholar 

  10. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? TPAMI 26, 147–159 (2004)

    Article  Google Scholar 

  11. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: ICCV (2001)

    Google Scholar 

  12. Komodakis, N., Paragios, N., Tziritas, G.: Mrf energy minimization and beyond via dual decomposition. TPAMI 33, 531–552 (2011)

    Article  Google Scholar 

  13. Kappes, J.H., Andres, B., Hamprecht, F.A., Schnorr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N.: et al.: A comparative study of modern inference techniques for discrete energy minimization problems. In: CVPR, pp. 1328–1335 (2013)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)

    Article  Google Scholar 

  15. Chan, T., Vese, L.: Active contours without edges. TIP 10, 266–277 (2001)

    MATH  Google Scholar 

  16. Ye, Y.: An o(n 3 l) potential reduction algorithm for linear programming. Mathematical Programming 50, 239–258 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of the ACM (JACM) 31, 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  19. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global Optimization 1, 15–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR (2010)

    Google Scholar 

  22. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. TPAMI 31, 2290–2297 (2009)

    Article  Google Scholar 

  23. Wang, P., Shen, C., van den Hengel, A.: A fast semidefinite approach to solving binary quadratic problems. In: CVPR (2013)

    Google Scholar 

  24. Wu, T.P., Yeung, S.K., Jia, J., Tang, C.K., Medioni, G.G.: A closed-form solution to tensor voting: Theory and applications. TPAMI 34, 1482–1495 (2012)

    Article  Google Scholar 

  25. Yeung, S.K., Wu, T.P., Tang, C.K., Chan, T.F., Osher, S.J.: Normal estimation of a transparent object using a video. In: TPAMI (2014)

    Google Scholar 

  26. Yeung, S.K., Wu, T.P., Tang, C.K.: Extracting smooth and transparent layers from a single image. In: CVPR (2008)

    Google Scholar 

  27. Yeung, S.K., Wu, T.P., Tang, C.K., Chan, T.F., Osher, S.: Adequate reconstruction of transparent objects on a shoestring budget. In: CVPR (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J., Yeung, SK. (2015). A Compact Linear Programming Relaxation for Binary Sub-modular MRF. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics