Advertisement

Point Sets Matching by Feature-Aware Mixture Point Matching Algorithm

  • Kun Sun
  • Peiran Li
  • Wenbing Tao
  • Liman Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8932)

Abstract

In this article we propose a new method to find matches between two images, which is based on a framework similar to the Mixture Point Matching (MPM) algorithm. The main contribution is that both feature and spatial information are considered. We treat one point set as the centroid of the Gaussian Mixture Model (GMM) and the other point set as the data. Different from traditional methods, we propose to assign each GMM component a different weight according to the feature matching score. In this way the feature information is introduced as a reasonable prior to guide the matching, and the spatial transformation offers a global constraint so that local ambiguity can be alleviated. Experiments on real data show that the proposed method is not only robust to outliers, deformation and rotation, but also can acquire the most matches while preserving high precision.

Keywords

image matching Gaussian Mixture Model feature information spatial arrangement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346 (2008)CrossRefGoogle Scholar
  3. 3.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Cech, J., Matas, J., Perdoch, M.: Efficient sequential correspondence selection by cosegmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1568–1581 (2010)CrossRefGoogle Scholar
  5. 5.
    Cho, M., Lee, K.M.: Progressive graph matching: Making a move of graphs via probabilistic voting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 398–405 (2012)Google Scholar
  6. 6.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2-3), 114–141 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hamid, R., Decoste, D., Lin, C.J.: Dense non-rigid point-matching using random projections. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2914–2921 (2013)Google Scholar
  8. 8.
    Hauagge, D., Snavely, N.: Image matching using local symmetry features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–213 (2012)Google Scholar
  9. 9.
    Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: Proc. IEEE Workshop on Math. Methods in Biomedical Image Analysis, pp. 190–197.Google Scholar
  10. 10.
    Jian, B.C.B., Vemuri: Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1633–1645 (2011)CrossRefGoogle Scholar
  11. 11.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1482–1489 (2005)Google Scholar
  12. 12.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  14. 14.
    A., Myronenko, X.S.: Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  15. 15.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (November 2011)Google Scholar
  16. 16.
    Scott, G.L., Longuet-Higgins, H.C.: An algorithm for associating the features of two images. Proceedings of the Royal Society of London. Series B: Biological Sciences 244(1309), 21–26 (1991)CrossRefGoogle Scholar
  17. 17.
    Torki, M., Elgammal, A.: One-shot multi-set non-rigid feature-spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3058–3065 (2010)Google Scholar
  18. 18.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kun Sun
    • 1
  • Peiran Li
    • 1
  • Wenbing Tao
    • 1
  • Liman Liu
    • 2
  1. 1.National Key Laboratory of Science and Technology on Multi-spectral Information Processing, School of AutomationHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Biomedical EngineeringSouth-Central University for NationalitiesWuhanChina

Personalised recommendations