Advertisement

Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts

  • Egil Bae
  • Xue-Cheng Tai
  • Jing Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8932)

Abstract

In this work, we study the problems of computing spatially continuous cuts, which has many important applications of image processing and computer vision. We focus on the convex relaxed formulations and investigate the corresponding flow-maximization based dual formulations. We propose a series of novel continuous max-flow models based on evaluating different constraints of flow excess, where the classical pre-flow and pseudo-flow models over graphs are re-discovered in the continuous setting and re-interpreted in a new variational manner. We propose a new generalized proximal method, which is based on a specific entropic distance function, to compute the maximum flow. This leads to new algorithms exploring flow-maximization and message-passing simultaneously. We show the proposed algorithms are superior to state of art methods in terms of efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Transactions on PAMI 28, 106–118 (2006)CrossRefGoogle Scholar
  2. 2.
    Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision 92(1), 112–129 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. Journal of Machine Learning Research 6, 1705–1749 (2005)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on PAMI 26, 359–374 (2001)Google Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on PAMI 23, 1222 (2001)CrossRefGoogle Scholar
  6. 6.
    Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967)CrossRefGoogle Scholar
  7. 7.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press (1997)Google Scholar
  9. 9.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical Report TR-2008-05, University of Bonn (November 2008)Google Scholar
  10. 10.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sciences 3(4), 1015–1046 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  13. 13.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. J. Sci. Comput. 45(1-3), 272–293 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Royal Stat. Soc., Series B, 271–279 (1989)Google Scholar
  17. 17.
    Hochbaum, D.S.: The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research 56(4), 992–1009 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Mathematics of Operations Research 19(4), 790–814 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kolmogorov, V., Wainwright, M.J.: On the optimality of tree-reweighted max-product message-passing. In: UAI, pp. 316–323 (2005)Google Scholar
  20. 20.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts: Anisotropic metrics and expansion moves. In: ICCV, pp. 405–412 (2009)Google Scholar
  23. 23.
    Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)zbMATHGoogle Scholar
  24. 24.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)Google Scholar
  27. 27.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimization 14(5), 877–898 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17(3), 670–690 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Teboulle, M.: A unified continuous optimization framework for center-based clustering methods. J. Mach. Learn. Res. 8, 65–102 (2007)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Transactions on Information Theory 51, 3697–3717 (2002)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51(11), 3697–3717 (2005)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: CVPR, USA, San Francisco (2010)Google Scholar
  33. 33.
    Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik 126, 559–587 (2013)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: VMV 2008 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Egil Bae
    • 1
  • Xue-Cheng Tai
    • 3
  • Jing Yuan
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Medical Biophysics, Schulich Medical SchoolWestern UniversityCanada
  3. 3.Department of MathematicsUniversity of BergenNorway

Personalised recommendations