Skip to main content

A Novel Active Contour Model for Texture Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

Texture is intuitively defined as a repeated arrangement of a basic pattern or object in an image. There is no mathematical definition of a texture though. The human visual system is able to identify and segment different textures in a given image. Automating this task for a computer is far from trivial.

There are three major components of any texture segmentation algorithm: (a) The features used to represent a texture, (b) the metric induced on this representation space and (c) the clustering algorithm that runs over these features in order to segment a given image into different textures.

In this paper, we propose an active contour based novel unsupervised algorithm for texture segmentation. We use intensity covariance matrices of regions as the defining feature of textures and find regions that have the most inter-region dissimilar covariance matrices using active contours. Since covariance matrices are symmetric positive definite, we use geodesic distance defined on the manifold of symmetric positive definite matrices PD(n) as a measure of dissimilarity between such matrices. Using recent convexification methods, we are able to compute a global maxima of the cost function. We demonstrate performance of our algorithm on both artificial and real texture images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  2. Boothby, W.M.: An introduction to differentiable manifolds and Riemannian geometry. Academic Press, London (1975)

    Google Scholar 

  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Google Scholar 

  5. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  6. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Chaudhuri, B.B., Sarkar, N.: Texture segmentation using fractal dimension. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 72–77 (1995)

    Article  Google Scholar 

  9. Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Integrated active contours for texture segmentation. IEEE Trans. Image Process 15(6), 1633–1646 (2006)

    Article  Google Scholar 

  10. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 25–39 (1983)

    Article  Google Scholar 

  11. Derraz, F., Peyrodie, L., Taleb-Ahmed, A., Forzy, G.: Texture segmentation using globally active contours model and cauchy-schwarz distance. In: 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 391–395 (October 2012)

    Google Scholar 

  12. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Transactions on Image Processing 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry. In: Riemannian Geometry, Birkhäuser, Boston (1992)

    Chapter  Google Scholar 

  14. Donoser, M., Bischof, H.: Using covariance matrices for unsupervised texture segmentation. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  15. Dunn, D.F., Higgins, W.E.: Optimal gabor filters for texture segmentation. IEEE Transactions on Image Processing 5(7), 947–964 (1995)

    Article  Google Scholar 

  16. Fauzi, M.F.A., Lewis, P.H.: Automatic texture segmentation for content-based image retrieval application. Pattern Anal. Appl. 9(4), 307–323 (2006)

    Article  MathSciNet  Google Scholar 

  17. Fletcher, P.T., Joshi, S.C.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  18. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. J. Sci. Comput. 45(1-3), 272–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Img. Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  21. Houhou, N., Thiran, J.-P., Bresson, X.: Fast texture segmentation model based on the shape operator and active contour. In: CVPR (2008)

    Google Scholar 

  22. Houhou, N., Thiran, J.-P., Bresson, X.: Fast Texture Segmentation Based on Semi-local Region Descriptor and Active Contour. Numerical Mathematics: Theory, Methods and Applications 2(4), 445–468 (2009)

    MATH  MathSciNet  Google Scholar 

  23. Howarth, P., Rüger, S.M.: Evaluation of texture features for content-based image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 326–334. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  25. Laws, K.I.: Textured image segmentation. PhD thesis, Univ. Southern California, Los Angeles, CA, USA (1980)

    Google Scholar 

  26. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  27. Muzzolini, R., Yang, Y.-H., Pierson, R.: Multiresolution texture segmentation with application to diagnostic ultrasound images. IEEE Transactions on Medical Imaging 12(1), 108–123 (1993)

    Article  Google Scholar 

  28. Ojala, T., Pietik”ainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  29. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: CVPR (2), pp. 699–706 (2003)

    Google Scholar 

  31. Savelonas, M.A., Iakovidis, D.K., Maroulis, D.E.: An LBP-Based Active Contour Algorithm for Unsupervised Texture Segmentation. In: Proc. 18th International Conference on Pattern Recognition, ICPR 2006, vol. 2 (2006)

    Google Scholar 

  32. Tamura, H., Mori, S., Yamawaki, T.: Textural Features Corresponding to Visual Perception. IEEE Transaction on Systems, Man, and Cybernetics 8(6), 460–472 (1978)

    Article  Google Scholar 

  33. Todorovic, S., Ahuja, N.: Texel-based texture segmentation. In: ICCV, pp. 841–848 (2009)

    Google Scholar 

  34. Tüceryan, M., Jain, A.K.: Texture segmentation using voronoi polygons. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 211–216 (1990)

    Article  Google Scholar 

  35. Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Vese, L.A., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1-3), 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. CAAM technical reports

    Google Scholar 

  38. Wang, Z., Vemuri, B.C.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005)

    Article  Google Scholar 

  39. Wu, C., Tai, X.: Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models. SIAM Journal on Imaging Sciences 3(3), 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yu, L., Gimel’farb, G.L.: Separating a colour texture from an arbitrary background. In: DICTA, pp. 489–498 (2003)

    Google Scholar 

  41. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame) – towards a unified theory for texture modeling. International Journal of Computer Vision 27(2), 1–20 (1998)

    Article  Google Scholar 

  42. Zucker, S.W., Terzopoulos, D.: Finding Structure in Co-Occurrence Matrices for Texture Analysis. Computer Graphics and Image Processing 12, 286–308 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tatu, A., Bansal, S. (2015). A Novel Active Contour Model for Texture Segmentation. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics