Skip to main content

A Fast Projection Method for Connectivity Constraints in Image Segmentation

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

We propose to solve an image segmentation problem with connectivity constraints via projection onto the constraint set. The constraints form a convex set and the convex image segmentation problem with a total variation regularizer can be solved to global optimality in a primal-dual framework. Efficiency is achieved by directly computing the update of the primal variable via a projection onto the constraint set, which results in a special quadratic programming problem similar to the problems studied as isotonic regression methods in statistics, which can be solved with O(n logn) complexity. We show that especially for segmentation problems with long range connections this method is by orders of magnitudes more efficient, both in iteration number and runtime, than solving the dual of the constrained optimization problem. Experiments validate the usefulness of connectivity constraints for segmenting thin structures such as veins and arteries in medical image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  2. Barlow, R., Brunk, H.: The isotonic regression problem and its dual. Journal of the American Statistical Association 67(337), 140–147 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benmansour, F., Cohen, L.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision 92, 192–210 (2011), http://dx.doi.org/10.1007/s11263-010-0331-0

    Article  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011), http://dx.doi.org/10.1007/s10851-010-0251-1

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, C., Freedman, D., Lampert, C.H.: Enforcing topological constraints in random field image segmentation. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 2089–2096 (2011)

    Google Scholar 

  7. Criminisi, A., Sharp, T., Blake, A.: GeoS: Geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959), http://dx.doi.org/10.1007/BF01386390

    Article  MATH  MathSciNet  Google Scholar 

  9. El-Zehiry, N.Y., Grady, L.: Fast global optimization of curvature. In: CVPR, pp. 3257–3264. IEEE (2010)

    Google Scholar 

  10. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 3129–3136. IEEE (2010)

    Google Scholar 

  11. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(6), 755–768 (2003)

    Article  Google Scholar 

  12. Nowozin, S., Lampert, C.H.: Global connectivity potentials for random field models. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 818–825. IEEE (2009)

    Google Scholar 

  13. Pardalos, P.M., Xue, G.: Algorithms for a class of isotonic regression problems. Algorithmica 23(3), 211–222 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  15. Stühmer, J., Schröder, P., Cremers, D.: Tree shape priors with connectivity constraints using convex relaxation on general graphs. In: IEEE International Conference on Computer Vision (ICCV), Sydney, Australia (December 2013)

    Google Scholar 

  16. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: Proc. International Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  17. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in n–d images. Computer Vision and Image Understanding 112(1), 81–90 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stühmer, J., Cremers, D. (2015). A Fast Projection Method for Connectivity Constraints in Image Segmentation. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics