Skip to main content

A Novel Framework for Nonlocal Vectorial Total Variation Based on ℓp,q,r −norms

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

In this paper, we propose a novel framework for restoring color images using nonlocal total variation (NLTV) regularization. We observe that the discrete local and nonlocal gradient of a color image can be viewed as a 3D matrix/or tensor with dimensions corresponding to the spatial extend, the differences to other pixels, and the color channels. Based on this observation we obtain a new class of NLTV methods by penalizing the ℓp,q,r norm of this 3D tensor. Interestingly, this unifies several local color total variation (TV) methods in a single framework. We show in several numerical experiments on image denoising and deblurring that a stronger coupling of different color channels – particularly, a coupling with the ℓ ∞  norm – yields superior reconstruction results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM Series on Optimization, vol. 6. SIAM (2005)

    Google Scholar 

  2. Benning, M., Brune, C., Burger, M., Mueller, J.: Higher-order TV methods—enhancement via Bregman iteration. J. Sci. Comput. 54, 269–310 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Proc. 7, 304–309 (1998)

    Article  Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imag. 2(4), 255–284 (2008)

    Article  MathSciNet  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buades, A., Le, T.M., Morel, J.-M., Vese, L.A.: Fast cartoon + texture image filters. IEEE Trans. Image Proc. 19(8), 1978–1986 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duan, J., Pan, Z., Tai, X.C.: Color texture image inpainting using the non local CTV model. J. Signal Information Process. 4(3B), 43–51 (2013)

    Article  Google Scholar 

  11. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: Proc. of the 25th International Conference on Machine Learning, pp. 272–279. ACM, New York (2008)

    Chapter  Google Scholar 

  12. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilboa, G., Osher, S.: Nonlocal image regularization and supervised segmentation. SIAM Multiscale Model. Simul. 6(2), 595–630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on geometric measure theory. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 237–333 (2010)

    Google Scholar 

  16. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lefkimmiatis, S., Roussos, A., Unser, M., Maragos, P.: Convex generalizations of total variation based on the structure tensor with applications to inverse problems. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 48–60. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Soc. (2001)

    Google Scholar 

  20. Miyata, T., Sakai, Y.: Vectorized total variation defined by weighted L infinity norm for utilizing inter channel dependency. In: Proc. of the 19th IEEE International Conference on Image Processing (ICIP), pp. 3057–3060 (2012)

    Google Scholar 

  21. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: Proc. of International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 810–817 (2009)

    Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis, Princeton Landmarks in Mathematics. Reprint of the 1970 original, Princeton Paperbacks (1997)

    Google Scholar 

  24. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  25. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Proc. 5(11), 1582–1586 (1996)

    Article  Google Scholar 

  26. Smith, S.M., Brady, J.M.: SUSAN - A new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997)

    Article  Google Scholar 

  27. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. of the 6th International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  28. Yaroslavsky, L.: Digital Picture Processing. Springer, New York (1985)

    Book  MATH  Google Scholar 

  29. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical Report 08-34, UCLA Cam Report (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Duran, J., Moeller, M., Sbert, C., Cremers, D. (2015). A Novel Framework for Nonlocal Vectorial Total Variation Based on ℓp,q,r −norms. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics