Skip to main content

Gas Seepage and Past Climate Change

  • Chapter
  • First Online:
Natural Gas Seepage

Abstract

This chapter discusses the “potential” climatic role of hydrocarbon gas seepage in the geological past. Today, total geological methane emissions represent the second largest natural source of methane, following wetlands, and are comparable, in terms of magnitude, to other anthropogenic sources. To understand what happened in the past and whether or not seepage influenced pre-anthropogenic climate change, two important considerations must be taken into account. The first consideration is whether or not it is logical to assume, in the absence of man-made methane sources before the industrial revolution and during pre-anthropogenic time periods (>5,000 years ago), that gas seepage was the second largest methane source in absolute terms and therefore constituted a major control on variations in atmospheric methane burden. The second consideration is whether or not seepage has been constant over geological time periods. Using specific references to Late Quaternary and Cenozoic geological time scale changes, this chapter discusses how seepages, as a result of geological factors that change over time, may have influenced global climate. We obtain a sense of the potential impact of gas seepage on climate over long geological time scales if seepage is considered to be a part of a dynamic carbon cycle, which includes a gigantic reservoir of organic carbon buried in sedimentary basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PA, Allen JR (2006) Basin analysis. Blackwell, Oxford, 549 pp

    Google Scholar 

  • Blunier T, Brook E (2001) Timing of millenial-scale climate changes in antarctica and greenland during the last glacial period. Science 291:109–112

    Article  Google Scholar 

  • Bock M, Schmitt J, Möller L, Spahni R, Blunier T, Fischer H (2010) Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaard-Oeschger events. Science 328:1686–1689

    Google Scholar 

  • Brook E, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273:1087–1091

    Article  Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Google Scholar 

  • Cantrell CA, Shetter RE, McDaniel AH, Calvert JG, Davidson JA, Lowe DC, Tyler SC, Cicerone RJ, Greenberg JP (1990) Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. J Geophys Res 95:22,455–22,462

    Google Scholar 

  • Chappellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:127–131

    Article  Google Scholar 

  • Chappellaz J, Fung IY, Thompson AM (1993) The atmospheric CH4 increase since the last glacial maximum (1) source estimates. Tellus 45B:228–241

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Coleman DD, Liu C-L, Riley KM (1988) Microbial methane in the shallow paleozoic sediments and glacial deposits of illinois, U.S.A. Chem Geol 71:23–40

    Article  Google Scholar 

  • Colli B, De Ascentiis A (2003) Il Cenerone: vulcanello di fango di Pineto. De rerum natura. Periodico di informazione sull’ambiente, n.35–36, anno XI

    Google Scholar 

  • Conti S, Fontana D, Gubertini A, Sighinolfi G, Tateo F, Fioroni C, Fregni P (2004) A multidisciplinary study of middle miocene seep-carbonates from the northern apennine foredeep (Italy). Sedim Geol 169:1–19

    Article  Google Scholar 

  • Cramer B, Poelchau HS, Gerling P, Lopatin NV, Litke R (1999) Methane released from groundwater—The source of natural gas accumulations in northern West Siberia. Mar Pet Geol 16:225–244

    Article  Google Scholar 

  • Crutzen PJ, Bruhl C (1993) A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the preindustrial holocene and the present. Geoph Res Lett 20:1047–1050

    Article  Google Scholar 

  • Dickens GR, Paull CK, Wallace P (1997) The ODP leg 164 scientific party direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385:426–428

    Google Scholar 

  • Etiope G, Feyzullayev A, Baciu CL (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Pet Geol 26:333–344

    Article  Google Scholar 

  • Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Article  Google Scholar 

  • Etiope G, Klusman RW (2010) Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planet Change 72:265–274

    Article  Google Scholar 

  • Etiope G, Papatheodorou G, Christodoulou D, Ferentinos G, Sokos E, Favali P (2006) Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): origin and geohazard. AAPG Bull 90:701–713

    Google Scholar 

  • Etiope G, Martinelli G, Caracausi A, Italiano F (2007) Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geoph Res Lett 34:L14303. doi:10.1029/2007GL030341

    Article  Google Scholar 

  • Etiope G, Milkov AV, Derbyshire E (2008) Did geologic emissions of methane play any role in Quaternary climate change? Global Planet Change 61:79–88

    Article  Google Scholar 

  • Etiope G, Panieri G, Fattorini D, Regoli F, Vannoli P, Italiano F, Locritani M, Carmisciano C (2014) A thermogenic hydrocarbon seep in shallow Adriatic Sea (Italy): gas origin, sediment contamination and benthic foraminifera. Mar Pet Geol 57:283–293

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geoph 51:276–299

    Article  Google Scholar 

  • Fischer H, Behrens M, Bock M, Richter U, Schmitt J, Loulergue L, Chappellaz J, Spahni R, Blunier T, Leuenberger M, Stocker TF (2008) Changing boreal methane sources and constant biomass burning during the last termination. Nature 452:864–867

    Google Scholar 

  • Formolo MJ, Salacup JM, Petsch ST, Martini AM, Nusslein K (2008) A new model linking atmospheric methane sources to Pleistocene glaciation via methanogenesis in sedimentary basins. Geology 36:139–142

    Article  Google Scholar 

  • Fowler SR, Mildenhall J, Zalova S (2000) Mud volcanoes and structural development on Shah Deniz. J Pet Sci Eng 28:189–206

    Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Methane venting and gas hydrate-related carbonates at the hydrate ridge: their classification, distribution and origin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurence, distribution, and detection. Geophysical Monograph, vol 124. American Geophysical Union, Washington, DC, pp 99–113

    Google Scholar 

  • Higgins JA, Schrag DP (2006) Beyond methane: towards a theory for the paleocene-eocene thermal maximum. Earth Planet Sci Lett 245:523–537

    Article  Google Scholar 

  • Hinrichs K-U, Hmelo LR, Sylva SP (2003) Molecular fossil record of elevated methane levels in late pleistocene coastal waters. Science 299:1214–1217

    Article  Google Scholar 

  • Huseynov DA, Guliyev IS (2004) Mud volcanic natural phenomena in the South Caspian Basin: geology, fluid dynamics and environmental impact. Environ Geol 46:1012–1023

    Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126

    Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change. The clathrate gun hypothesis. American Geophysical Union, Washington, DC, p 216

    Book  Google Scholar 

  • Klemme HD, Ulmishek GF (1991) Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bull 75:1809–1851

    Google Scholar 

  • Kroeger KF, di Primio R, Horsfield B (2011) Atmospheric methane from organic carbon mobilization in sedimentary basins—The sleeping giant? Earth-Sci Rev 107:423–442

    Article  Google Scholar 

  • Lerche I, Yu Z, Torudbakken B, Thomsen RO (1997) Ice loading effects in sedimentary basins with reference to the Barents Sea. Mar Pet Geol 14:277–339

    Article  Google Scholar 

  • Levine JG, Wolff EW, Jones AE, Sime LC (2011) The role of atomic chlorine in glacial-interglacial changes in the carbon-13 content of atmospheric methane. Geoph Res Lett 38:L04801. doi:10.1029/2010GL046122

    Google Scholar 

  • Link WK (1952) Significance of oil and gas seeps in world oil exploration. AAPG Bull 36:1505–1540

    Google Scholar 

  • Luyendyk B, Kennett J, Clark JF (2005) Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level. Mar Pet Geol 22:591–596

    Article  Google Scholar 

  • Maslin MA, Thomas E (2003) Balancing the deglacial global carbon budget; the hydrate factor. Quatern Sci Rev 22:1729–1736

    Article  Google Scholar 

  • Mathews MD (1996) Migration—a view from the top. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression. AAPG Memoir, vol 66. Penn Well Publishing, Tulsa, pp 139–155

    Google Scholar 

  • Mellors R, Kilb D, Aliyev A, Gasanov A, Yetirmishli G (2007) Correlations between earthquakes and large mud volcano eruptions. J Geophys Res 112:B04304. doi:10.1029/2006JB004489

    Google Scholar 

  • Melton JR, Whiticar MJ, Eby P (2011) Stable carbon isotope ratio analyses on trace methane from ice samples. Chem Geol 288:88–96

    Article  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  Google Scholar 

  • Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702

    Article  Google Scholar 

  • Milkov AV, Sassen R (2002) Economic geology of offshore gas hydrate accumulations and provinces. Mar Pet Geol 19:1–11

    Article  Google Scholar 

  • Milkov AV, Sassen R (2003) Two-dimensional modeling of gas hydrate decomposition in the northwestern Gulf of Mexico: Significance to global change assessment. Global Planet Change 36:31–46

    Article  Google Scholar 

  • Milkov AV, Claypool GE, Lee Y-J, Dickens GR, Xu W, Borowski WS (2003) The ODP Leg 204 Scientific Party. In situ methane concentrations at Hydrate Ridge offshore Oregon: new constraints on the global gas hydrate inventory from an active margin. Geology 31:833–836

    Google Scholar 

  • Möller L, Sowers T, Bock M, Spahni R, Behrens M, Schmitt J, Miller H, Fischer H (2013) Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nat Geosci 6:885–890

    Google Scholar 

  • Morner NA (1978) Faulting, fracturing and seismicity as functions of glacioisostasy in Fennoscandia. Geology 6:41–45

    Article  Google Scholar 

  • Nisbet EG (2002) Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again? Phil Trans R Soc London 360:581–607

    Article  Google Scholar 

  • Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia Minor. Quat Sci Rev 14:1005–1028

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Petrenko VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP (2009) 14CH4 measurements in Greenland Ice: investigating Last Glacial Termination CH4 sources. Science 324:506–508

    Article  Google Scholar 

  • Quigley DC, Hornafius JS, Luyendyk BP, Francis RD, Clark J, Washburn L (1999) Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geology 27:1047–1050

    Article  Google Scholar 

  • Revil A (2002) Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophys Res Lett 29:15-1–15-4

    Google Scholar 

  • Saueressig G, Crowley JN, Bergamaschi P, Bruehl C, Brenninkmeijer CA, Fischer H (2001) Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane. J Geophys Res 106:23127–23138

    Google Scholar 

  • Schaefer H, Whiticar MJ, Brook EJ, Petrenko VV, Ferretti DF, Severinghaus JP (2006) Ice record of δ13C for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science 313:1109–1112

    Article  Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Article  Google Scholar 

  • Sowers T (2006) Late Quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311:838–840

    Article  Google Scholar 

  • Spulber L, Etiope G, Baciu C, Malos C, Vlad SN (2010) Methane emission from natural gas seeps and mud volcanoes in Transylvania (Romania). Geofluids 10:463–475

    Article  Google Scholar 

  • Stewart I, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quatern Sci Rev 19:1367–1389

    Article  Google Scholar 

  • Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R, Eidem T, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545

    Article  Google Scholar 

  • Thompson AM, Chappellaz JA, Fung IY, Kucsera TL (1993) The atmospheric CH4 increase since the Last Glacial Maximum (2). Interactions with oxidants. Tellus 45B:242–257

    Article  Google Scholar 

  • Torres ME, Mix AC, Kinports K, Haley B, Klinkhammer GP, McManus J, de Angelis MA (2003) Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography 18, 1062, doi:10.1029/2002PA000824

  • Valentine DL, Blanton DC, Reeburgh WS, Kastner M (2001) Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin. Geochim Cosmochim Acta 65:2633–2640

    Article  Google Scholar 

  • Whiticar MJ, Schaefer H (2007) Constraining past global tropospheric methane budgets with carbon and hydrogen isotope ratios in ice. Philos Trans R Soc London Ser. A 365:1793–1828

    Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophy J Int 139:657–670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Etiope .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etiope, G. (2015). Gas Seepage and Past Climate Change. In: Natural Gas Seepage. Springer, Cham. https://doi.org/10.1007/978-3-319-14601-0_8

Download citation

Publish with us

Policies and ethics