Skip to main content

Seepage in Serpentinised Peridotites and on Mars

  • Chapter
  • First Online:
Natural Gas Seepage
  • 1426 Accesses

Abstract

This book has mainly addressed the classical seepage of natural gas of biotic (microbial and thermogenic) origin in sedimentary rocks. It is also known that methane and other light hydrocarbons can be abiotically produced (i.e., by chemical reactions that do not directly involve organic matter). Abiotic production may occur over a wide range of temperatures and pressures and within a variety of geological systems. Two main classes of abiotic CH4 generation processes can be distinguished, magmatic and gas-water-rock interactions. Magmatic and high temperature hydrothermal processes in volcanic and geothermal systems produce a gas mixture that is mainly composed of carbon dioxide (CO2), while abiotic methane is a very minor component. Indeed, field observations suggest that the majority of abiotic gas on Earth’s surface is produced by low-temperature, gas–water–rock reactions. Of particular interest are the Fischer-Tropsch Type (FTT) reactions, the mechanism most widely invoked for explaining large quantities of abiotic CH4 seeping to the surface. Only CH4-rich abiotic gas seeping to the surface is considered in this chapter. Such seepage generally occurs in serpentinised ultramafic rocks (peridotites). Serpentinisation is considered a fundamental step in the origin of life, representing the primordial passage from inorganic to organic chemistry. Serpentinisation can also be a source of methane in atypical petroleum systems where hydrocarbon reservoirs include, or are adjacent to, igneous rocks, and a potential source of methane on other planets, such as Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem Geol 71:211–222

    Article  Google Scholar 

  • Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinization of the Zambales Ophiolite, Philippines. Appl Geochem 5:625–630

    Article  Google Scholar 

  • Allen CC, Oehler DZ (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112

    Article  Google Scholar 

  • Allen CC, Oehler D, Etiope G, van Rensbergen P, Baciu C, Feyzullayev A, Martinelli G, Tanaka K, Van Rooij D (2013) Fluid expulsion in terrestrial sedimentary basins: a process providing potential analogs for giant polygons and mounds in the martian lowlands. Icarus 224:424–432

    Article  Google Scholar 

  • Ames DE, Farrow CEG (2007) Metallogeny of the sudbury mining camp, Ontario. In: Goodfellow, WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, pp 329–350, Special Publication No. 5

    Google Scholar 

  • Arvidson RE, Ruff SW, Morris RV, Ming DW, Crumpler LS, Yen AS, Squyres SW, Sullivan RJ, Bell III JF et al (2010) Spirit mars rover mission: overview and selected results from the northern home plate winter haven to the side of Scamander crater. J Geophys Res 115:E00F03. http://dx.doi.org/10.1029/2008JE003183

  • Atreya SK, Mahaffy PR, Wong A-S (2007) Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet Space Sci 55:358–369

    Article  Google Scholar 

  • Bacuta GC, Kay RW, Gibbs AK, Bruce RL (1990) Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales ophiolite complex, Philippines. J Geochem Explor 37:113–143

    Article  Google Scholar 

  • Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1947–1960

    Article  Google Scholar 

  • Boschetti T, Etiope G, Toscani L (2013) Abiotic methane in hyperalkaline springs of Genova, Italy. Procedia Earth Planet Sci 7:248–251

    Article  Google Scholar 

  • Boulart C, Chavagnac V, Monnin C, Delacour A, Ceuleneer G, Hoareau G (2013) Differences in gas venting from ultramafic-hosted warm springs: the example of Oman and Voltri ophiolites. Ofioliti 38:143–156

    Google Scholar 

  • Bruni J, Canepa M, Cipolli F, Marini L, Ottonello G, Vetuschi Zuccolini M (2002) Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy. App Geochem 17:455–474

    Article  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359

    Article  Google Scholar 

  • Chizek MR, Murphy JR, Kahre MA, Haberle RM, Marzo GA (2010) A shortlived trace gas in the martian atmosphere: a general circulation model of the likelihood of methane. Lunar Planet Sci 41 Abstract 1527

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In:Stocker TF et al (eds) Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of IPCC, Cambridge Univ Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Cook AP (1998). Occurrence, emission and ignition of combustible strata gases in Witwatersrand gold mines and Bushveld platinum mines, and means of ameliorating related ignition and explosion hazards, part 1: literature and technical review. Safety in mines research advisory committee, GAP 504 (report)

    Google Scholar 

  • Dai J, Yang S, Chen H, Shen X (2005) Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Org Geochem 36:1664–1688

    Article  Google Scholar 

  • Dias PA, Leal Gomes C, Castelo Branco JM, Pinto Z (2006) Paragenetic positioning of PGE in mafic and ultramafic rocks of Cabeço de Vide—alter do Chão Igneous Complex. Book of abstracts, VII Congresso Nacional de Geologia, pp 1007–1010

    Google Scholar 

  • Economou-Eliopoulos M (1996) Platinum-group element distribution in chromite ores from ophiolite complexes: implications for their exploration. Ore Geol Rev 11:363–381

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201. http://dx.doi.org/10.1029/2010GL042596

    Google Scholar 

  • Etiope G, Ionescu A (2014) Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks. Geofluids. doi: 10.1111/gfl.12106 (first published online)

  • Etiope G, Klusman RW (2010) Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planet Change 72:265–274

    Google Scholar 

  • Etiope G, Schoell M (2014) Abiotic gas: atypical but not rare. Elements 10:291–296

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51:276–299

    Article  Google Scholar 

  • Etiope G, Ehlmann B, Schoell M (2013a) Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars. Icarus 224:276–285

    Article  Google Scholar 

  • Etiope G, Oehler DZ, Allen CC (2011a) Methane emissions from Earth’s degassing: Implications for Mars. Planet Space Sci 59:182–195

    Article  Google Scholar 

  • Etiope G, Schoell M, Hosgormez H (2011b) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet Sci Lett 310:96–104

    Article  Google Scholar 

  • Etiope G, Tsikouras B, Kordella S, Ifandi E, Christodoulou D, Papatheodorou G (2013b) Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chem Geol 347:161–174

    Article  Google Scholar 

  • Etiope G, Vance S, Christensen LE, Marques JM, Ribeiro da Costa I (2013c) Methane in serpentinized ultramafic rocks in mainland Portugal. Mar Pet Geol 45:12–16

    Article  Google Scholar 

  • Etiope G, Vadillo I, Whiticar MJ, Marques JM, Carreira P, Tiago I, Benavente J, Jiménez P, Urresti B (2014) Methane seepage at hyperalkaline springs in the Ronda peridotite massif (Spain). AGU 2014 Fall Meeting Abstracts

    Google Scholar 

  • Etiope G, Judas J, Whiticar MJ (2015) First detection of abiotic methane in the eastern United Arab Emirates ophiolite aquifer. Arab J Geosci (in press)

    Google Scholar 

  • Farooqui MY, Hou H, Li G, Machin N, Neville T, Pal A, Shrivastva C, Wang Y, Yang F, Yin C, Zhao J, Yang Z (2009) Evaluating volcanic reservoirs. Oilfield Rev 21:36–47

    Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    Article  Google Scholar 

  • Fritz P, Clark ID, Fontes J-C, Whiticar MJ, Faber E (1992) Deuterium and 13C evidence for low temperature production of hydrogen and methane in a highly alkaline groundwater environment in Oman. In: Kharaka YK, Maest AS (eds), Proceedings of 7th int symp water–rock interaction: low temperature environments, vol 1. Balkema, Rotterdam, pp 793–796

    Google Scholar 

  • Garnier J, Quantin C, Guimaraes E, Garg VK, Martins ES, Becquer T (2009) Understanding the genesis of ultramafic soils and catena dynamics in Niquelandia, Brazil. Geoderma 151:204–214

    Article  Google Scholar 

  • Garuti G, Zaccarini F (1997) In situ alteration of platinum-group minerals at low temperature: evidence from serpentinized and weathered chromitite of the Vourinos complex, Greece. Can Miner 35:611–626

    Google Scholar 

  • Garuti G, Zaccarini F, Economou-Eliopoulos M (1999) Paragenesis and composition of laurite from chromitites of Othrys (Greece): implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Min Deposit 34:312–319

    Article  Google Scholar 

  • Geminale A, Formisano V, Giuranna M (2008) Methane in martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet Space Sci 56:1194–1203

    Article  Google Scholar 

  • Goulty NR (2008) Geomechanics of polygonal fault systems: a review. Petrol Geosci 14:389–397

    Article  Google Scholar 

  • Grimm RE, Painter SL (2009) On secular evolution of groundwater on Mars. Geophys Res Lett 36:L24803

    Article  Google Scholar 

  • Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98

    Article  Google Scholar 

  • Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA, Zent AP, Quinn R (2001) On the possibility of liquid water on present-day Mars. J Geophys Res 106(E10):23317–23326

    Article  Google Scholar 

  • Hoefen TM, Clark RN, Bandfield JL, Smith MD, Pearl JC, Christensen PR (2003) Discovery of olivine in the Nili Fossae region of Mars. Science 302:627–630

    Article  Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • Hosgormez H, Etiope G, Yalçın MN (2008) New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8:263–275

    Article  Google Scholar 

  • Jacquemin M, Beuls A, Ruiz P (2010) Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal Today 157:462–466

    Article  Google Scholar 

  • Jenden PD, Hilton DR, Kaplan IR, Craig H (1993) Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell D (ed) Future of energy gases, USGS Professional paper, vol 1570, pp 31–35

    Google Scholar 

  • Juteau T (1968) Commentaire de la carte geologique des ophiolites de la region de Kumluca (Taurus lycien, Turquie meridionale): cadre structural, modes de gisement et description des principaux fades du cortege ophiolitique. MTA Bull 70:70–91

    Google Scholar 

  • Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proc Nat Acad Sci USA 105(17):295–17,300

    Google Scholar 

  • Krasnopolsky VA, Maillard JP, Owen TC (2004) First detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547

    Article  Google Scholar 

  • Lefevre F, Forget F (2009) Observed variations of methane on Mars unexplained by known chemistry and physics. Nature 460:720–723

    Article  Google Scholar 

  • Lyon G, Giggenbach WF, Lupton JF (1990) Composition and origin of the hydrogen rich gas seep, Fiordland, New Zealand. EOS Trans V51D(10):1717

    Google Scholar 

  • Macdonald AH, Fyfe WS (1985) Rate of serpentinization in seafloor environments. Tectonophysics 116:123–135

    Article  Google Scholar 

  • Marques JM, Carreira PM, Carvalho MR, Matias MJ, Goff FE, Basto MJ, Graça RC, Aires-Barros L, Rocha L (2008) Origins of high pH mineral waters from ultramafic rocks, Central Portugal. App Geochem 23:3278–3289

    Article  Google Scholar 

  • McCollom TM (2013) Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev Min Geochem 75:467–494

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Article  Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm martian slopes. Science 333:740–743

    Article  Google Scholar 

  • Mellon MT, Jakosky BM, Postawko SE (1997) The persistence of equatorial ground ice on Mars. J Geophys Res 102:19357–19369

    Article  Google Scholar 

  • Meyer-Dombard DR, Woycheese KM, Cardace D, Arcilla C (2013) Geochemistry of Microbial Environments in Serpentinizing Springs of the Philippines. AOGS 2013, Brisbane. Abstract # IG19-D2-PM2-P-007

    Google Scholar 

  • Milenic D, Dragisic V, Vrvic M, Milankovic D, Vranjes A (2009) Hyperalkaline mineral waters of Zlatibr ultramafic massif in Western Serbia, Europe. Abstract proceedings of the AWRA International Water Congress—Watershed Management for Water systems, Seattle, USA

    Google Scholar 

  • Mischna MA, Allen M, Richardson MI, Newman CE, Toigo AD (2011) Atmospheric modelling of Mars methane surface releases. Planet Space Sci 59:227–237

    Article  Google Scholar 

  • Monnin C, Chavagnac V, Boulart C, Ménez B, Gérard M, Gérard E, Quéméneur M, Erauso G, Postec A, Guentas-Dombrowski L, Payri C, Pelletier B (2014) The low temperature hyperalkaline hydrothermal system of the Prony bay (New Caledonia). Biogeosciences Discuss 11:6221–6267

    Article  Google Scholar 

  • Morrill PL, Gijs Kuenen J, Johnson OJ, Suzuki S, Rietze A, Sessions AL, Fogel ML, Nealson KH (2013) Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars. Geochim Cosmochim Acta 109:222–240

    Article  Google Scholar 

  • Mosier DL, Singer DA, Moring BC, Galloway JP (2012) Podiform chromite Deposits—database and grade and tonnage models. U.S. Geological Survey Scientific Investigations, Report, pp 2012–5157

    Google Scholar 

  • Mottl MJ, Wheat C, Frier P (2004) Decarbonateion, serpentinization, abgiogenic methane, and extreme pH beneath the Mariana Forearc. AGU Fall Meeting 2004, abstract V13A-1441

    Google Scholar 

  • Mumma MJ, Novak RE, DiSanti MA, Bonev BP (2003) A sensitive search for methane on Mars. Am Astron Soc Bull 35:937–938

    Google Scholar 

  • Mumma MJ, Villanueva G, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in Northern summer 2003. Science 323:1041–1045

    Article  Google Scholar 

  • Mustard JF, Murchie LS, Pelkey SM et al (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–309

    Article  Google Scholar 

  • Ni Y, Dai J, Zhou Q, Luo X, Hu A, Yang C (2009) Geochemical characteristics of abiogenic gas and its percentage in Xujiaweizi Fault Depression, Songliao Basin, NE China. Petrol Explor Dev 36:35–45

    Article  Google Scholar 

  • Oehler DZ, Allen CC (2010) Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208:636–657

    Article  Google Scholar 

  • Oehler DZ, Allen CC (2012) Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean? Astrobiology 12:601–615

    Article  Google Scholar 

  • Okland I, Huang S, Dahle H, Thorseth IH, Pedersen RB (2012) Low temperature alteration of serpentinized ultramafic rock and implications for microbial life. Chem Geol 318–319:75–87

    Article  Google Scholar 

  • Oze C, Sharma M (2005) Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys Res Lett 32:L10203. doi:10.1029/2005GL022691

    Article  Google Scholar 

  • Page NJ, Talkington RW (1984) Palladium, platinum, rhodium, ruthenium and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland. Can Miner 22:137–149

    Google Scholar 

  • Page NJ, Pallister JS, Brown MA, Smewing JD, Haffty J (1982) Palladium, platinum, rhodium, iridium and ruthenium in chromite-rich rocks from the Samail ophiolite, Oman. Can Miner 20:537–548

    Google Scholar 

  • Pašava J, Vymazalová A, Petersen S (2007) PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow spreading Mid Atlantic Ridge. Min Deposita 42:423–431

    Article  Google Scholar 

  • Pawson JF, Oze C, Etiope G, Horton TW (2014) Discovery of new methane-bearing hyperalkaline springs in the serpentinized Dun Mountain Ophiolite, New Zealand. AGU 2014 Fall Meeting Abstracts

    Google Scholar 

  • Prichard HM, Brough CP (2009) Potential of ophiolite complexes to host PGE deposits. In: Chusi L, Ripley EM (eds) New developments in magmatic Ni-Cu and PGE Deposits. Geological Publishing House, Beijing, pp 277–290

    Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–365

    Article  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319:604–607

    Article  Google Scholar 

  • Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371

    Google Scholar 

  • Sachan HK, Mukherjee BK, Bodnar RJ (2007) Preservation of methane generated during serpentinization of upper mantle rocks: evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India). Earth Planet Sci Lett 257:47–59

    Article  Google Scholar 

  • Sanchez-Murillo R, Gazel E, Schwarzenbach E, Crespo-Medina M, Schrenk MO, Boll J, Gill BC (2014) Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst 15:1783–1800

    Article  Google Scholar 

  • Schrenk MO, Brazelton WJ, Lang S (2013) Serpentinization, carbon and deep life. Rev Min Geochem 75:575–606

    Article  Google Scholar 

  • Schutter SR (2003) Occurrences of hydrocarbons in and around igneous rocks. In: Hydrocarbons in crystalline rocks. Geol Soc London, Spec Pub 214:35–68

    Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097

    Article  Google Scholar 

  • Sherwood Lollar B, Lacrampe-Couloume G, Voglesonger K, Onstott TC, Pratt LM, Slater GF (2008) Isotopic signatures of CH4 and higher hydrocarbon gases from precambrian shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim Cosmochim Acta 72:4778–4795

    Article  Google Scholar 

  • Smith NJP, Sheperd TJ, Styles MT, Williams GM (2005) Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe. In: Doré´ AG, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives, Proceedings of 6th petroleum geology conference, 349–358

    Google Scholar 

  • Suda K, Ueno Y, Yoshizaki M, Nakamura H, Kurokawa K, Nishiyama E, Yoshino K, Hongoh Y, Kawachi K, Omori S, Yamada K, Yoshida N, Maruyama S (2014) Origin of methane in serpentinite-hosted hydrothermal systems: the CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth Planet Sci Lett 386:112–125

    Article  Google Scholar 

  • Szatmari P, da Fonseca TCO, Miekeley NF (2011) Mantle-like trace element composition of petroleum—contributions from serpentinizing peridotites. In: Closson D (ed) Tectonics, InTech, 3:332–358

    Google Scholar 

  • Szponar N, Brazelton WJ, Schrenk MO, Bower DM, Steele A, Morrill PL (2013) Geochemistry of a continental site of serpentinization in the Tablelands ophiolite, gros morne national park: a Mars analogue. Icarus 224:286–296

    Article  Google Scholar 

  • Taran YA, Kliger GA, Sevastyanov VS (2007) Carbon isotope effects in the open-system Fischer-Tropsch synthesis. Geochim Cosmochim Acta 71:4474–4487

    Article  Google Scholar 

  • Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

    Article  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK plus 26 others and the MSL Science Team (2014) Mars methane detection and variability at Gale crate. Science doi:10.1126/science.1261713

    Google Scholar 

  • Whiticar MJ, Etiope G (2014a) Hydrogen isotope fractionation in land-based serpentinization systems. In:Suda et al. (eds) Comment on “Origin of methane in serpentinite-hosted hydrothermal systems: the CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring”. Earth Planet Sci Lett 386 (2014) 112–125, Earth Planet Sci Lett 401:373–375

    Google Scholar 

  • Whiticar MJ, Etiope G (2014b) Methane in land-based serpentinized peridotites: new discoveries and isotope surprises. AGU 2014 Fall Meeting Abstracts

    Google Scholar 

  • Yuce G, Italiano F, D’Alessandro W, Yalcin TH, Yasin DU, Gulbay AH, Ozyurt NN, Rojay B, Karabacak V, Bellomo S, Brusca L, Yang T, Fu CC, Lai CW, Ozacar A, Walia V (2014) Origin and interactions of fluids circulating over the Amik Basin (Hatay-Turkey) and relationships with the hydrologic, geologic and tectonic settings. Chem Geol 388:23–39

    Article  Google Scholar 

  • Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Etiope .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etiope, G. (2015). Seepage in Serpentinised Peridotites and on Mars. In: Natural Gas Seepage. Springer, Cham. https://doi.org/10.1007/978-3-319-14601-0_7

Download citation

Publish with us

Policies and ethics