Skip to main content

Gas Seepage Classification and Global Distribution

  • Chapter
  • First Online:
Natural Gas Seepage

Abstract

The surface expressions of natural gas seepage can be classified on the basis of spatial dimension, visibility, and fluid typology. Macro-seeps (or seeps) are “channelled” flows of gas, typically related to fault systems. They include gas and oil seeps, mud volcanoes and gas-bearing springs. Gas flux is expressed in terms of mass/time (e.g., kg/day or tons/year). Microseepage is the pervasive, widespread exhalation of gas throughout relatively large areas, conceptually independent from seeps, even if also enhanced along faults. Gas flux is expressed in terms of mass/area/time (for methane it is usually in mg m−2 day−1). Sometimes the term “micro-seeps” is used in the scientific literature, especially in the marine environment to define relatively smaller seeps, not observable, for example, by hydroacoustic methods. However, the term can be misleading as it may be confused with microseepage. This classification is, in theory, valid for either subaerial (land-based) or underwater (marine and lake) environments. The marine environment can have specific gas-seepage structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anka Z, Berndt C, Gay A (2012) Hydrocarbon leakage through focused fluid flow systems in continental margins. Mar Geol 332–334:1–3

    Article  Google Scholar 

  • Archer D, Buffet B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Nat Acad Sci U.S.A 106:20,596–20,601

    Google Scholar 

  • Baciu C, Etiope G, Cuna S, Spulber L (2008) Methane seepage in an urban development area (Bacau, Romania): origin, extent and hazard. Geofluids 8:311−320

    Google Scholar 

  • Balakin VA, Gabrielants GA, Guliyev IS, Dadashev FG, Kolobashkin VM, Popov AI, Feyzullayev AA (1981) Test of experimental study of hydrocarbon degassing of lithosphere of South Caspian basin and adjacent mountains systems, using laser gas-analyzer “Iskatel-2”. Dokl Akad Nauk SSSR 260(1):154–156 (in Russian)

    Google Scholar 

  • Batjes NH, Bridges EM (1994) Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: development of a global database (WISE). J Geophys Res 99(D8):16,479–16,489

    Google Scholar 

  • Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jǿrgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic methane oxidation. Nature 407:623–626

    Article  Google Scholar 

  • Clarke RH, Cleverly RW (1991) Leakage and post-accumulation migration. In: England WA, Fleet AJ (eds) Petroleum migration, vol 59. Geological Society Special Publication, London, pp 265–271

    Google Scholar 

  • Crane K, Vogt PR, Sundvor E, Shor A, Reed T IV (1995) SeaMARC II investigations in the northern Norwegian-Greenland Sea. Meddelelser Norsk Polarinstitutt 137:32–140

    Google Scholar 

  • Darling WG, Gooddy DC (2006) The hydrogeochemistry of methane: evidence from english ground waters. Chem Geol 229:293–312

    Article  Google Scholar 

  • Delichatsios MA (1990) Procedure for calculating the air entrainment into turbulent pool and jet fires. J Fire Prot Engin 2:93–98

    Article  Google Scholar 

  • Dillon WP, Nealon JW, Taylor MH, Lee MW, Drury RM, Anton CH (2001) Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge—causes and implications to seafloor stability and methane release. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, pp 211–233

    Google Scholar 

  • Dimitrov L (2002a) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76

    Article  Google Scholar 

  • Dimitrov L (2002b) Contribution to atmospheric methane by natural gas seepages on the Bulgarian continental shelf. Contin Shelf Res 22:2429–2442

    Article  Google Scholar 

  • Dong Y, Scharffe D, Lobert JM, Crutzen PJ, Sanhueza E (1998) Fluxes of CO2, CH4 and N2O from temperate forest soil: the effect of leaves and humus layers. Tellus 50B:243–252

    Article  Google Scholar 

  • Duffy M, Kinnaman FS, Valentine DL, Keller EA, Clark JF (2007) Gaseous emission rates from natural petroleum seeps in the Upper Ojai Valley, California. Environ Geosci 14:197–207

    Article  Google Scholar 

  • Etiope G (2005) Mud volcanoes and microseepage: the forgotten geophysical components of atmospheric methane budget. Ann Geophys 48:1–7

    Google Scholar 

  • Etiope G (2009a) Natural emissions of methane from geological seepage in Europe. Atm Environ 43:1430–1443

    Article  Google Scholar 

  • Etiope G (2009b) GLOGOS, A new global onshore gas-oil seeps dataset. Search and discovery, Article #70071, AAPG online journal. http://www.searchanddiscovery.net. Accessed Dec 2014

  • Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Google Scholar 

  • Etiope G, Klusman RW (2010) Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Glob Plan Change 72:265–274

    Article  Google Scholar 

  • Etiope G, Martinelli G (2009) “Pieve Santo Stefano” is not a mud volcano: comment on “Structural controls on a carbon dioxide-driven mud volcano field in the Northern Apennines” (by Bonini 2009). J Struct Geol 31:1270–1271

    Article  Google Scholar 

  • Etiope G, Milkov AV (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46:997−1002

    Google Scholar 

  • Etiope G, Caracausi A, Favara R, Italiano F, Baciu C (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geophys Res Lett 29, doi:10.1029/2001GL014340

  • Etiope G, Feyzullaiev A, Baciu CL, Milkov AV (2004) Methane emission from mud volcanoes in eastern Azerbaijan. Geology 32:465–468

    Article  Google Scholar 

  • Etiope G, Papatheodorou G, Christodoulou D, Ferentinos G, Sokos E, Favali P (2006) Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): origin and geohazard. AAPG Bull 90:701–713

    Article  Google Scholar 

  • Etiope G, Martinelli G, Caracausi A, Italiano F (2007) Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophys Res Lett 34:L14303. doi:10.1029/2007GL030341

    Article  Google Scholar 

  • Etiope G, Lassey KR, Klusman RW, Boschi E (2008) Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys Res Lett 35:L09307. doi:10.1029/2008GL033623

    Article  Google Scholar 

  • Etiope G, Feyzullayev A, Baciu CL (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Pet Geol 26:333–344

    Article  Google Scholar 

  • Etiope G, Zwahlen C, Anselmetti FS, Kipfer R, Schubert CJ (2010) Origin and flux of a gas seep in the Northern Alps (Giswil, Switzerland). Geofluids 10:476–485

    Article  Google Scholar 

  • Etiope G, Baciu C, Schoell M (2011a) Extreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania). Chem Geol 280:89–96

    Article  Google Scholar 

  • Etiope G, Nakada R, Tanaka K, Yoshida N (2011b) Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4-CO2 fluxes. Appl Geochem 26:348–359

    Google Scholar 

  • Etiope G, Schoell M, Hosgormez H (2011c) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet Sci Lett 310:96–104

    Article  Google Scholar 

  • Etiope G, Christodoulou D, Kordella S, Marinaro G, Papatheodorou G (2013a) Offshore and onshore seepage of thermogenic gas at Katakolo Bay (Western Greece). Chem Geol 339:115–126

    Article  Google Scholar 

  • Etiope G, Drobniak A, Schimmelmann A (2013b) Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol 43:178–186

    Google Scholar 

  • Greber E, Leu W, Bernoulli D, Schumacher ME, Wyss R (1997) Hydrocarbon provinces in the Swiss southern Alps—a gas geochemistry and basin modelling study. Mar Pet Geol 14:3–25

    Article  Google Scholar 

  • Guliyev IS, Feizullayev AA (1997) In: All about mud volcanoes. NAFTA-Press, Baku Pub, House, p 120

    Google Scholar 

  • Herbin JP, Saint-Germès M, Maslakov N, Shnyukov EF, Vially R (2008) Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine—Crimea), study of the mud and the gas: inferences for the petroleum potential. Oil Gas Sci Technol Rev IFP 63:609–628

    Article  Google Scholar 

  • Hong WL, Etiope G, Yang TF, Chang PY (2013) Methane flux of miniseepage in mud volcanoes of SW Taiwan: comparison with the data from Europe. J Asian Earth Sci 65:3–12

    Article  Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res 20(C9):20,703–20,711

    Google Scholar 

  • Hosgormez H, Etiope G, Yalçın MN (2008) New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8:263–275

    Article  Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London, 293 pp

    Google Scholar 

  • Hovland M, Judd AG, Burke RA Jr (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26:559–578

    Article  Google Scholar 

  • Hovland M, Jensen S, Fichler C (2012) Methane and minor oil macro-seep systems—their complexity and environmental significance. Mar Geol 332–334:163–173

    Article  Google Scholar 

  • Ionescu A (2015) Geogenic methane in petroliferous and geothermal areas in Romania: origin and emission to the atmosphere. Dissertation, Babes-Bolyai University, Cluj-Napoca

    Google Scholar 

  • St. John B (1980) Sedimentary basins of the world and giant hydrocarbon accumulations. Tulsa, AAPG, Map and Accompanying Text, 26 pp

    Google Scholar 

  • Judd AG, Hovland M (2007) Seabed fluid flow: impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kappel WM, Nystrom EA (2012) Dissolved methane in New York groundwater. U.S. Geological Survey Open-File Report 2012–1162, 6 pp. http://pubs.usgs.gov/of/2012/1162/

  • Kelley JT, Dickson SM, Belknap DF, Barnhardt WA, Henderson M (1994) Giant sea-bed pockmarks: evidence for gas escape from Belfast Bay. Mar Geol 22:59–62

    Article  Google Scholar 

  • Khan SD, Jacobson S (2008) Remote sensing and geochemistry for detecting hydrocarbon microseepages. GSA Bull 120:96–105

    Article  Google Scholar 

  • King LH, MacLean B (1970) Pockmarks on the Scotian shelf. GSA Bull 81:3141–3148

    Article  Google Scholar 

  • Klusman RW (1993) Soil gas and related methods for natural resource exploration. Wiley, Chichester 483 pp

    Google Scholar 

  • Klusman RW (2003a) Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project, Rangely, Colorado, USA. App Geochem 18:1825–1838

    Article  Google Scholar 

  • Klusman RW (2003b) A geochemical perspective and assessment of leakage potential for a mature carbon dioxide-enhanced oil recovery project and as a prototype for carbon dioxide sequestration, Rangely field, Colorado. AAPG Bull 87:1485–1507

    Article  Google Scholar 

  • Klusman RW (2005) Baseline studies of surface gas exchange and soil–gas composition in preparation for CO2 sequestration research: Teapot Dome, Wyoming USA. AAPG Bull 89:981–1003

    Google Scholar 

  • Klusman RW (2006) Detailed compositional analysis of gas seepage at the National Carbon Storage Test Site, Teapot Dome, Wyoming USA. App Geochem 21:1498–1521

    Article  Google Scholar 

  • Klusman RW (2009) Geochemical detection of gas microseepage from CO2 sequestration AAPG/SEG/SPE Hedberg Conference. “Geological Carbon Sequestration: Prediction and Verification” August 16–19, 2009, Vancouver, BC Canada

    Google Scholar 

  • Klusman RW, Jakel ME, LeRoy MP (1998) Does microseepage of methane and light hydrocarbons contribute to the atmospheric budget of methane and to global climate change? Ass Pet Geochem Explor Bull 11:1–55

    Google Scholar 

  • Klusman RW, Leopold ME, LeRoy MP (2000) Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: results from chamber measurements and modeling of transport from deep sources. J Geophys Res 105D:24,661–24,670

    Google Scholar 

  • Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40:1–52

    Article  Google Scholar 

  • Link WK (1952) Significance of oil and gas seeps in world oil exploration. AAPG Bull 36:1505–1540

    Google Scholar 

  • Liu Q, Chan L, Liu Q, Li H, Wang F, Zhang S, Xia X, Cheng T (2004) Relationship between magnetic anomalies and hydrocarbon microseepage above the Jingbian gas field, Ordos basin, China. AAPG Bull 88:241–251

    Article  Google Scholar 

  • LTE (2007) Phase II raton basin gas seep investigation las animas and huerfano counties, Colorado, Project #1925 oil and gas conservation response fund. http://cogcc.state.co.us/Library/Ratoasin/Phase%20II%20Seep%20Investigation%20Final%20Report.pdf

  • Martinelli G, Cremonini S, Samonati E (2012) Geological and geochemical setting of natural hydrocarbon emissions in Italy. In: Advances in natural gas technology, InTech e Open Access Publisher, RIJEKA, pp 79–120 http://cdn.intechopen.com/pdfs/35288/InTech-Geological_and_geochemical_setting_of_natural_hydrocarbon_emissions_in_italy.pdf

  • Masters CD, Root DH, Turner RM (1998) World conventional crude oil and natural gas: identified reserves, undiscovered resources and futures. U.S. Geol Survey Open-File Report 98–468

    Google Scholar 

  • Mazzini A, Svensen H, Etiope G, Onderdonk N, Banks D (2011) Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA). J Volc Geoth Res 205:76–83

    Article  Google Scholar 

  • Mazzini A, Etiope G, Svensen H (2012) A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry. Earth Planet Sci Lett 317–318:305–318

    Article  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci Rev 66:183–197

    Article  Google Scholar 

  • Milkov AV, Sassen R (2001) Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope. Mar Geol 179:71–83

    Article  Google Scholar 

  • Milkov A, Vogt PR, Crane K, Lein AY, Sassen R, Cherkashev GA (2004) Geological, geochemical, and microbial processes at the hydrate bearing Håkon Mosby mud volcano: a review. Chem Geol 205:347–366

    Article  Google Scholar 

  • Morner NA, Etiope G (2002) Carbon degassing from the lithosphere. Global Planet Change 33:185–203

    Article  Google Scholar 

  • Motyka RJ, Poreda RJ, Jeffrey WA (1989) Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanoes in the Copper River basin Alaska. Geochim Cosmochim Acta 53:29–41

    Article  Google Scholar 

  • Papatheodorou G, Hasiotis T, Ferentinos G (1993) Gas-charged sediments in the Aegean and Ionian Seas, Greece. Mar Geol 112:171–184

    Article  Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  Google Scholar 

  • Reeves F (1953) Italian oil and gas resources. AAPG Bull 37:601−653

    Google Scholar 

  • Römer M, Torres M, Kasten S, Kuhn G, Graham AGC, Mau S, Little CTS, Linse K, Pape T, Geprägs P, Fischer D, Wintersteller P, Marcon Y, Rethemeyer J, Bohrmann G, shipboard scientific party ANT-XXIX/4 (2014) First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett 403:166–177

    Google Scholar 

  • Sassen R, Roberts HH, Aharon P, Larkin J, Chinn EW, Carney R (1993) Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental-slope. Org Geochem 20:77–89

    Article  Google Scholar 

  • Sassen R, Joye S, Sweet ST, DeFreitas DA, Milkov AV, MacDonald IR (1999) Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Org Geochem 30:485–497

    Article  Google Scholar 

  • Saunders DF, Burson KR, Thompson CK (1999) Model for hydrocarbon microseepage and related nearsurface alterations. AAPG Bull 83:170–185

    Google Scholar 

  • Schumacher D, Abrams MA (1996) Hydrocarbon migration and its near surface expression. AAPG Memoir 66:446 pp

    Google Scholar 

  • Sechman H (2012) Detailed compositional analysis of hydrocarbons in soil gases above multi-horizon petroleum deposits—a case study from western Poland. App Geochem 27:2130–2147

    Article  Google Scholar 

  • Skinner JA Jr, Mazzini A (2009) Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar Pet Geol 26:1866–1878

    Article  Google Scholar 

  • Solheim A, Elverhoi A (1997) Gas-related sea-floor depressions. In: Glaciated continental margins, Chapman and Hall, London

    Google Scholar 

  • Spulber L, Etiope G, Baciu C, Malos C, Vlad SN (2010) Methane emission from natural gas seeps and mud volcanoes in Transylvania (Romania). Geofluids 10:463–475

    Article  Google Scholar 

  • Sturz AA, Kamps RL, Earley PJ (1992) Temporal changes in mud volcanoes, Salton Sea Geothermal Area. In: Kharaka YK, Maest AS (eds) Water-rock interaction. Balkema, Rotterdam, pp 1363–1366

    Google Scholar 

  • Suess E (2010) Marine cold seeps. In: Kenneth N (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Timmis, pp 185–203

    Google Scholar 

  • Tang J, Bao Z, Xiang W, Gou Q (2007) Daily variation of natural emission of methane to the atmosphere and source identification in the Luntai Fault region of the Yakela condensed oil/gas field in the Talimu basin, Xinjiang, China. Acta Geol Sinica 81:771–778

    Google Scholar 

  • Tang J, Yin H, Wang G, Chen Y (2010) Methane microseepage from different sectors of the Yakela condensed gas field in Tarim Basin, Xinjiang, China. App Geochem 25:1257–1264

    Article  Google Scholar 

  • Thiel V, Peckman J, Richnow HH, Luth U, Reitner J, Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and microbial mat. Mar Chem 73:97–112

    Article  Google Scholar 

  • Tucker J, Hitzman D (1996) Long-term and seasonal trends in the response of hydrocarbon-utilizing microbes to light hydrocarbon gases in shallow soils. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression. AAPG Mem 66:353–357

    Google Scholar 

  • Valentine DL (2011) Emerging topics in marine methane biogeochemistry. Ann Rev Mar Sci 3:147–171

    Article  Google Scholar 

  • van der Meer F, van Dijk P, van der Werff H, Yang H (2002) Remote sensing and petroleum seepage: a review and case study. Terra Nova 14:1–17

    Article  Google Scholar 

  • Wagner M, Wagner M, Piske J, Smit R (2002) Case histories of microbial prospection for oil and gas, onshore and offshore northwest Europe. In: Schumacher D, LeSchack LA (eds) Surface exploration case histories: applications of geochemistry, magnetics and remote sensing, AAPG studies in geology no 48 and SEG Geophys Ref Series no 11, pp 453–479

    Google Scholar 

  • Warner NR, Kresse TM, Hays PD, Down A, Karr JD, Jackson RB, Vengosh A (2013) Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. App Geochem 35:207–220

    Article  Google Scholar 

  • Yang TF, Yeh GH, Fu CC, Wang CC, Lan TF, Lee HF, Chen CH, Walia V, Sung QC (2004) Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environ Geol 46:1003–1011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Etiope .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etiope, G. (2015). Gas Seepage Classification and Global Distribution. In: Natural Gas Seepage. Springer, Cham. https://doi.org/10.1007/978-3-319-14601-0_2

Download citation

Publish with us

Policies and ethics