Skip to main content

Application of Halotolerant Bacteria to Restore Plant Growth Under Salt Stress

  • Chapter
Halophiles

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

High salinity abolishes several stages of plant life ranging from the seed germination step to maturity. Many processes are inhibited, such as phytohormone synthesis and regulation, normal root and shoot development, nutrient uptake, photosynthesis, and DNA replication. Plant growth promoting bacteria (PGPB) are naturally colonizing plants and occur in the rhizosphere or non rhizosphere soil and benefit plant growth by numerous processes. The importance of halotolerant PGPB resides in their ability to adapt to increased salinity by efficient osmoregulatory mechanism to be able to continue regular cell functions. Thus, halotolerant PGPB are able to provide plants with their activities to challenge osmotic stress by supporting them in the restoration of essential activities, e.g., in their hormonal balance. Halotolerant PGPB stimulate plant growth under high salinity by using similar mechanisms like halosensitive PGPB, such as synthesis of indole acetic acid (IAA), gibberellins (GA), cytokinins (CK), abscisic acid (ABA), solubilization of insoluble phosphate , synthesis and excretion of siderophores , and production of ACC-deaminase to reduce high growth inhibitory levels of ethylene occurring in plants at salt stress conditions. Furthermore, some halotolerant PGPB are even able to colonize plants endophytically , produce various antimicrobial metabolites against pathogenic fungi and bacteria, support plant health by improving systemic resistance and contribute to soil fertility and remediation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir M, Aslem A, Khan MY, Jamshaid MU, Ahmed M, Asghar HN, Zahir ZA (2013) Co-inoculation with Rhizobium and plant growth promoting Rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Biol 1:17–22

    Google Scholar 

  • Abdel-Ghaffar BA, El-Shourbagy MN, Basha EM (1998) Responses of NaCl stressed wheat to IAA. In: Proceedings of the 6th Egypt botany conference, Cairo University, Giza, Egypt, vol 6, pp 79–88

    Google Scholar 

  • Abolhasani M, Lakzian A, Tajabadipour A, Haghnia G (2010) The study of salt and drought tolerance of Sinorhizobium bacteriua to the adaptation to alkaline condition. Aust J Basic Appl Sci 4:882–886

    CAS  Google Scholar 

  • Abu-Sharar TM, Bingham FT, Rhoades JD (1987) Stability of soil aggregates as affected by electrolyte concentration and composition. Soil Sci Soc Am J 51:309–314

    Article  CAS  Google Scholar 

  • Agrios GN (1997) Plant physiology. Academic, New York

    Google Scholar 

  • Ahmad F, Husain FM, Iqbal A et al (2011) Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: a critical area in PGPR research. In: Ahmad F (ed) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 363–391

    Chapter  Google Scholar 

  • Ahmed M, Sandhu GR (1988) Response of legumes to salt stress: effect on growth and nitrogen status of soybean. Pak J Agric Res 9:463–468

    Google Scholar 

  • Ahmed M, Zahir AZ, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L). Braz J Microbiol 44:1341–1348

    Article  Google Scholar 

  • Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM 14405 T. Front Plant Sci 4:1–10. doi:10.3389/fpls.2013.00141

    Article  Google Scholar 

  • Ali RM, Abbas HM (2003) Response of salt stressed barely seedlings to phenylurea. Plant Soil Environ 49:158–162

    Google Scholar 

  • Alizadeh O, Parsaeimehr A (2011) The influence of plant growth promoting rhizobacteria (PGPR) on the reduction of abiotic stresses in crops. Extrem Life Biospeol Astrol 3:93–99

    Google Scholar 

  • Allotey DFK, Asiamah RD, Dedzoe CD, Nyamekye AL (2008) Physico-chemical properties of three salt-affected soils in the lower volta basin and management strategies for their sustainable utilization. West Afr J Appl Ecol 12:1–14

    Google Scholar 

  • Aly MM, El-Sabbagh, El-Shouny WA, Ebrahim MKH (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pak J Biol Sci 6:2073–2080

    Article  Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22(6):603–606

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O (2006) Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L) plants in a salt-affected soil. Int J Environ Sci Technol 3:43–51

    Article  CAS  Google Scholar 

  • Asim M, Aslam M, Bano A, Munir M, Majeed A, Abbas SH (2013) Role of phytohormones in root nodulation and yield of soybean under salt stress. Am J Res Commun 1:191–208

    Google Scholar 

  • Awad NM, Turky AS, Abdelhamid MT, Attia M (2012) Amelioration of environmental salt stress on the growth of Zea mays (L.) plants by exo-polysaccharide producing bacteria. J Appl Sci Res 8:2033–2044

    CAS  Google Scholar 

  • Azevedo NAD, Prisco JT, Filho J, De Lacerda CF, Silva JV, Da Costa PHA, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38

    Google Scholar 

  • Bakker EP, Booth IR, Dinnbier U, Epstein W, Gajewska A (1987) Evidence for multiple K+ export systems in Escherichia coli. J Bacteriol 169:3743–3749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the Sea water-irrigated oil seed halophyte Salicornia bigelovi inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soil 32:265–272

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L Czern). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bernard T, Pocard J-A, Perroud B, Le Rudulier D (1986) Variations in the response of salt-stressed Rhizobium strains to bétaïnes. Arch Microbiol 143:359–364

    Article  CAS  Google Scholar 

  • Bhakthavatchalu S, Shivakumar S, Sullia SB (2013) Characterization of multiple plant growth promotion traits of Pseudomonas aeruginosa FP6, a potential stress tolerant biocontrol agent. Ann Biol Res 4:214–223

    CAS  Google Scholar 

  • Bianco C, Defez R (2011) Soil bacteria support and protect plants against abiotic stress. In: Shanker A (ed) Abiotic stress in plants – mechanisms and adaptation. Inntech Europe, Rijeka, pp 143–169

    Google Scholar 

  • Biro B, Villanyi I, Koves-Péchy K (2002) Abundance and adaptation level of some soil microbes in salt-affected soils. Agrokem Talajtan 51:99–106

    Article  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Boncompagni E, Qsteras M, Poggl M-C, Le Rudulier D (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouhmouch I, Brahada F, Filali-Maltouf A, Aurag J (2001) Selection of osmotolerant and effective strains of Rhizobiaceae for inoculation of common bean (Phaseolus vulgaris) in Maroccan saline soils. Agronomie 21:591599

    Article  Google Scholar 

  • Broek AV, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  Google Scholar 

  • Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2014) Modulation rhizosphere microbiota to mitigate salt stress of barley plants. In: Microbial ecology and application of inoculants in biocontrol – Indo-German Workshop. Book of Abstracts, IARI, New Delhi, pp. 35–37

    Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by salt-tolerant bacterium. Recent Res Sci Technol 3:67–70

    Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Screening of efficient halotolerant solubilizing bacterium and its effect on promoting plant growth under saline conditions. World Appl Sci J 16:1110–1117

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N2-fixation on growth, symbiotic performance and nitrogen assimilation in Faba bean (Vicia faba L) under salt stress. Plant Soil 172:289–297

    Article  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Google Scholar 

  • Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R (2013) Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth promotion rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr J Microbiol Res 7:5082–5089

    Google Scholar 

  • Das S, De M, Ray R, Ganguly D, Jana TK, De TK (2011) Salt tolerant culturable microbes accessible in the soil of the Sundarbans mangrove forest, India. Open J Ecol 1:35–40

    Article  Google Scholar 

  • Davis PJ (2004) Nature, occurrence and functions. In: Davis PJ (ed) Plant hormones biosynthesis, signal transduction, action, vol 1. Kluwer Academic, Dordrecht, pp 1–15

    Google Scholar 

  • Del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 8:1–14

    Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57:122–127

    Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in szernozem soil, semi-arid region of Uzbekistan. Sci World J 5:501–509

    Article  CAS  Google Scholar 

  • Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Rev 39:73–78

    Article  CAS  Google Scholar 

  • Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salts on amino acid, organic acid, and carbohydrates composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • François LE, Maas EV, Donovan TJ, Youngs VL (1986) Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agron J 78:1053–1058

    Article  Google Scholar 

  • Frenkel H, Goertzen JO, Rhoades JD (1978) Effect of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci Soc Am J 142:32–39

    Article  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:274–325

    Google Scholar 

  • Galinski EA, Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–360

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Gerhardt KE, Greenberg BM, Glick BR (2006) The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Curr Trends Microbiol 2:61–73

    CAS  Google Scholar 

  • Ghadiri H, Hussein J, Dordipour E, Rose C (2004) The effect of soil salinity and sodicity on soil erodibility, sediment transport and downstream water quality. In: 13th international soil conservation organization conference – Brisbane, July 2004 Conserving Soil and Water for Society, Sharing Solutions 631, pp 1–6

    Google Scholar 

  • Ghorai S, Pal KK, Dey R, Jasrai YT (2013) A comparative study of effect Rhizobacteria onto seedling vigour of groundnut in in vitro condition isolated from Kutch region. Sch Acad J Biosci 1:179–182

    Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2002) Osmotic stress-induced changes in germination, growth and soluble sugar content of Sorghum bicolour (L.) moench seeds. Bulg J Physiol 28:12–25

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Holguin G (2003) Transformation of Azospirillum brasilense Cd with ACC deaminase gene from Enterobacter cloacae UW4 fused to the tetr gene promoter improves its fitness and plant growth promoting ability. Microb Ecol 46:122–133

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Golezani KG, Yengabad FM (2012) Physiological responses of lentil (Lensculinaris Medik) to salinity. Int J Agric Crop Sci 4:1531–1535

    Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth promoting potential. Int J Syst Evol Microbiol 61:2799–2804

    Google Scholar 

  • Gouffi K, Blanco C (2000) Is the accumulation of osmoprotectant the unique mechanism involved in bacterial osmoprotection? Int J Food Microbiol 55:171–174

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BM, Huang X-D, Gerhardt K, Glick BR, Gurska J, Wang W, Lampi M, Khalid A, Isherwood D, Chang P, Wang H, Wu SS, Yu X-M, Dixon DG, Gerwing P (2007) Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils. In: Gavaskar AR, Silver CF (eds) Proceedings of the ninth international in situ and on-site remediation symposium, Chapter B-04. Batelle Press, Columbus

    Google Scholar 

  • Guasch-Vidal B, Estévez J, Dardanelli MS, Soria-Díaz ME, Fernández de Córdoba F, Balog CIA, Manyani H, Gil-Serrano A, Thomas- Oates J, Hensbergen PJ, Deelder AM, Megías M, Van Brussel AAN (2013) High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT899 in the absence of flavonoid inducers. Mol Plant Microbe Interact 26:451–460

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M (1996) Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J Plant Nutr 19:389–396

    Article  CAS  Google Scholar 

  • Halverso LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637

    Article  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense of chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Hartmann A (1988) Osmoregulatory properties of Azospirillum spp. In: Klingmüller W (ed) Azospirillum IV: genetics, physiology, and ecology. Springer, Berlin, pp 122–130

    Chapter  Google Scholar 

  • Hartmann A, Prabhu SR, Galinski EA (1991) Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 137:105–109

    Article  CAS  Google Scholar 

  • Hartmann A, Guendisch C, Bode W (1992) Azospirillum mutants improved in iron acquisition and osmotolerance as tools for the investigation of environmental fitness traits. Symbiosis 13:271–279

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxilic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Husen E, Wahyudi AT, Suwanto A, Giyanto (2011) Soybean response to 1-aminocyclopropane-1-carboxylate deaminase-producing pseudomonas under field soil conditions. Am J Agric Biol Sci 6:273–278

    Article  CAS  Google Scholar 

  • Hussain MI, Asghar HN, Arshad M, Shahbaz M (2013) Screening of multi-traits rhizobacteria to improve maize growth under axenic conditions. J Anim Plant Sci 23:514–520

    CAS  Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CV, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575

    Article  CAS  Google Scholar 

  • Jan NE, Ud-Din J, Kawabata S (2014) Impact of saline-alkali stress on the accumulation of solids in tomato fruits. Pak J Bot 46:161–166

    CAS  Google Scholar 

  • Janhmohammadi M, Bihmata MR, Ghasemzadeh F (2013) Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercet Agron Mold 1:49–67

    Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73:213–219

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric /endophytic bacteria with plants; a potential gateway to sustainable agriculture. GJAS 3:73–84

    Google Scholar 

  • Jing YD, He Z-L, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jofré E, Fischer S, Rivarola V, Balegno H, Mori G (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–422

    Article  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng App Sci 2:7–10

    CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Taylor and Francis group, Boca Raton

    Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-ß-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kahlaoui B, Hachicha M, Rejeb S, Rejeb MN, Hanchi B, Misle E (2011) Effects of saline water on tomato under subsurface drip irrigation: nutritional and foliar aspects. J Soil Sci Plant Nutr 11:69–86

    Article  Google Scholar 

  • Kang S-M, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kannan R, Damodaran T, Pandey BK, Umamaheswari S, Rai RB, Jha SK, Mishra V, Sharma DK, Sah V (2014) Isolation and characterization of endophytic plant growth-promoting bacteria (PGPB) associated to the sodicity tolerant polyembryonic mango (Mangifera indica L.) root stock and growth vigour in rice under saline sodic environment. Afr J Microbiol Res 8:628–636

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria x ananassa). Hortic Sci 48:563–567

    CAS  Google Scholar 

  • Kausar R, Shahzad M (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agric Soc Sci 2:216–218

    Google Scholar 

  • Kay BD (1990) Rates of change of soil structure under different cropping systems. Adv Soil Sci 12:1–52

    Article  Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34:529–538

    Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients – A field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Parvaiz M, Nawaz K, Hussain H, Arshad A, Shawaka S, Sarfaraz ZN, Waheed T (2013) Effect of Indole Acetic Acid (IAA) on morphological, biochemical and chemical attributes of Two varieties of maize (Zea mays L.) under salt stress. World Appl Sci J 26:1150–1159

    CAS  Google Scholar 

  • Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir AZ (2013) Effect of microbial inoculation on wheat growth and phyto-stabilization of chromium contaminated soil. Pak J Bot 45:27–34

    CAS  Google Scholar 

  • Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J (2014) Alleviation of salt stress by Enterobacter sp EJ01 in tomato and Arabidopsis is accompanied by Up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kogut M, Russell NJ (1987) Life at the limits: considerations on how bacteria can grow at extremes of temperature and pressure or with high concentrations of ions and solutes. Sci Prog 71:381–400

    CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Alguacil MM, Roldan A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716

    Article  CAS  Google Scholar 

  • Le Rudulier D, Bernard T (1986) Salt tolerance in Rhizobium: a possible role for betaines. FEMS Microbiol Rev 39:67–72

    Article  Google Scholar 

  • Le Rudulier D, Bernard T, Pocard J-A, Goas G (1983) Accroissement de l’osmotolerance chez Rhizobium meliloti par la glycine betaine et la proline betaine. CR Acad Sci Paris 297:155–160

    Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Maheshwari DK (2011) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, p 345

    Book  Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, p 333

    Book  Google Scholar 

  • Maheshwari DK (2013) Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, p 495

    Book  Google Scholar 

  • Mahmoodzadeh H, Khorasani FM, Besharat H (2013) Impact of salt stress on seed germination indices of five wheat cultivars. Ann Biol Res 4:93–96

    CAS  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int. doi:10.1155/2013/248078

    PubMed Central  PubMed  Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients. In: Marschner H (ed) Mineral nutrition of higher plants, vol 2. Academic, London, pp 229–312

    Chapter  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Maziah M, Zuraida AR, Halimi M, Zulkifli S, Sreeramanan S (2009) Responses of banana plantlets to rhizobacteria inoculation under salt stress condition. Am-Euras J Sustain Agric 3:290–305

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Montero-Calasanz MC, Santamaría C, Albareda M, Daza A, Duan J, Glick BR, Camacho M (2013) Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Span J Agric Res 11:146–154

    Article  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. Waha) under saline conditions Due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Rothballer M, Schmid M, Hartmann A (2012) Enhancement and restoration of growth of durum wheat (Triticum durum, var waha) on saline soil by using Azospirillum brasilense NH and marine alga Ulva lactuca. In: Krueger D, Meyer H (eds) Algae, ecology, economic uses and environmental impact marine biology. Nova Sciences, New York, pp 29–52

    Google Scholar 

  • Nadeem SM, Hussain I, Naveed M, Asghar HN, Zahir ZA, Arshad M (2006a) Performance of plant growth promoting rhizobacteria containing ACC-deaminase activity for improving growth of maize under salt-stressed conditions. Pak J Sci 43:114–120

    Google Scholar 

  • Nadeem SM, Zahir AZ, Naweed M, Arshad M, Shahzad SM (2006b) Variation in growth and ion uptake of maize due to the inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25:78–84

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirison P, Pimthong A (2014) Salt-tolerant and plant growth promoting bacteria isolated from Zn/Cd contaminated soil : identification and effect on rice under saline conditions. J Plant Interact 9:397–387

    Article  CAS  Google Scholar 

  • Nanda S, Abraham J (2013) Remediation of heavy metal contaminated soil. Afr J Biotechnol 12:3099–3109

    CAS  Google Scholar 

  • Naz R, Bano A (2013) Influence of exogenously applied salicylic acid and plant growth promoting rhizobacteria inoculation on the growth and physiology of sunflower (Helianthus annuus L) under salt stress. Pak J Bot 45:367–373

    CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan, and their implication in providing salt tolerance to Glycine max (L.). Afr J Biotechnol 8:5762–5766

    CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007a) Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Can J Microbiol 53(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Maheshwari DK (2007b) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92(8):1137–1142

    CAS  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium Peudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol. doi:10.1007/s11274-005-9043-ycbrs

    Google Scholar 

  • Perrig D, Boiero ML, Masciarelli O, Penna C, Ruiz OA, Cassan F, Luna V (2007) Plant growth promoting compounds produced by two strains of Azospirillum brasilense, and implications for inoculants formation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Pichereau V, Pocard J-A, Hamelin J, Blanco C, Bernard T (1998) Differential effects of Dimethylsulfoniopropionate, Dimethylsulfonioacetate and other S-Methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Appl Environ Microbiol 64:1420–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Loeano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Puentea ME, Holguina G, Bernard R, Glick B, Bashan Y (1999) Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiol Ecol 29:283–292

    Article  Google Scholar 

  • Qureshi RH, Ahmed R, Ilyas M, Aslam Z (1980) Screening of wheat (Triticum aestivum L) for salt tolerance. Pak J Agric Sci 27:9–26

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rabie GH, Aboul Nasr MB, Al-Humiany A (2005) Increased salinity tolerance of Cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology 33:51–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rachidai A, Driouch A, Ouassou A, El Hadrami I (1994) Effet du traitement salin sur la germination du blé dur (Triticum durum Desf.). Rev Amélior Prod Agr 6:209–228

    Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L) cultivated in saline soil. Pak J Bot 45:1955–1962

    CAS  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:1–7

    Article  CAS  Google Scholar 

  • Raza FA, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Aust J Crop Sci 7:1693–1698

    Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010a) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rengasamy P (2010b) Osmotic and ionic effects of various electrolytes on the growth of wheat. Aust J Soil Res 48:120–124

    Article  CAS  Google Scholar 

  • Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Aust J Soil Res 29:935–952

    Article  CAS  Google Scholar 

  • Riou N, Le Rudulier D (1990) Osmoregulation in Azospirillum brasilense: glycine betaine transport enhances growth and nitrogen fixation under salt stress. J Gen Microbiol 136:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Riou N, Poggi MC, Le Rudulier D (1991) Characterization of an osmoregulated periplasmic glycine betaine-binding protein in Azospirillum brasilense Sp7. Biochemistry 73:1187–1193

    Article  CAS  Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    Article  CAS  Google Scholar 

  • Roiston DE, Biggar JW, Nielsen DR (1984) Effect of salt on soils. Calif Agric 38:11–13

    Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biom Res 4:421–431

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 3:407–421

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Ag-Ind. Special Issue S69–S74

    Google Scholar 

  • Sarathambal C, Ilamurugu K (2013) Saline tolerant plant growth promoting diazotrophs from rhizosphere of Bermuda grass and their effect on rice. Indian J Weed Sci 45:80–85

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in ground-nut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saravanan S, Muthumanickam P, Saravanan TS, Santhaguru K (2013) Antagonistic potential of fluorescent pseudomonads and its impact on growth of tomato challenged with phytopathogens. Afr Crop Sci J 21:29–36

    Google Scholar 

  • Sarin MN, Narayanan A (1968) Effects of soil salinity and growth regulators on germination and seedling metabolism of wheat. Physiol Plant 21:1201–1209

    Article  CAS  Google Scholar 

  • Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–223

    Chapter  Google Scholar 

  • Shamseldin A, Nyalwidhe J, Werner D (2006) A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Curr Microbiol 52:333–339

    Article  CAS  PubMed  Google Scholar 

  • Sharma RC, Gupta NK, Gupta S, Hasegawa H (2005) Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthesis 43:609–613

    Article  Google Scholar 

  • Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX (2012) Effect of plant growth promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill) under simulated seawater irrigation. J Gen Appl Microbiol 58:253–262

    Article  CAS  PubMed  Google Scholar 

  • Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflowers (Helianthus annuus L). Not Sci Biol 2:57–66

    CAS  Google Scholar 

  • Shookietwattana K, Maneewan K (2012) Screening of efficient halotolerant phosphate solubilizing bacterium and its effect on promoting plant growth under saline conditions. World Appl Sci J 16:1110–1117

    Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogeae (L.) by the interaction of halotolerant plant-growth promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Gwang-Hyun H, Tongmin S (2010) Isolation, characterization, and use for plant growth promotion under salt stress of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123

    Article  Google Scholar 

  • Suarez C, Ratering S, Kramer I, Schnell S (2014a) Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacterium isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 64:481–486

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Ratering S, Geißler-Plaum R, Schnell S (2014b) Rheinheimera hassiensis sp. nov. and Rheinheimera muenzenbergensis sp. nov., two new species from the rhizosphere of Hordeum secalinum. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.061200-0

    Google Scholar 

  • Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T (1994) Osmo-adaptation in rhizobia: ectoine-induced salt-tolerance. J Bacteriol 176:5210–5217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal SC, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tripathi AK, Mishra BM, Tripathi P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. J Biosci 23:463–471

    Article  CAS  Google Scholar 

  • Ul-Hassan T, Bano A (2014) Role of plant growth promoting rhizobacteria and L -tryptophan on improvement of growth, nutrient availability and yield of wheat (Triticum aestivum) under salt stress. Int J Appl Agr Res 4:30–39

    Google Scholar 

  • Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free-living plant growth promoting rhizobacteria. Indian J Res 3:73–78

    CAS  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for the defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Peer R, Van Kuik AJ, Rattink H, Schippers B (1990) Control of Fusarium wilt in carnation grown on rockwool by Pseudomonas sp. strain WCS417r and by Fe-EDDHA. Neth J Plant Pathol 96:119–132

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-degrading endophtye Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evaporation in poplar cuttings. Environ Pollut 158:2915–2919

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944

    CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yadav JSP, Agarwal RR (1961) A comparative study on the effectiveness of gyps and dhaincha (Sesbania actuleata) in the reclamation of saline-alkaline soil. J Indian Soil Sci 9:151–156

    CAS  Google Scholar 

  • Yildirim E, Taylor AG, Spittler TD (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hortic 111:1–6

    Article  CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of Broccoli by plant growth promoting rhizobacteria with manure. Sci Hortic 46:932–936

    CAS  Google Scholar 

  • Younesi O, Baghbani A, Namdari A (2013a) The effects of Pseudomonas fluorescensce and Rhizobium meliloti co-inoculation on nodulation and mineral nutrient contents in alfalfa (Medicago sativa) under salinity stress. Int J Agric Crop Sci 5:1500–1507

    Google Scholar 

  • Younesi O, Chaichi MR, Postini K (2013b) Salt tolerance in alfalfa following inoculation with Pseudomonas. Middle-East J Sci Res 16:101–107

    Google Scholar 

  • Zafar-ul-Hye M, Ahmed M, Shahzad SM (2013) Synergistic effect of Rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86

    CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Kim M-S, Dowd SE, Shi H, Pare PW (2008) Soil bacterial confer plant tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhafid Nabti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nabti, E., Schmid, M., Hartmann, A. (2015). Application of Halotolerant Bacteria to Restore Plant Growth Under Salt Stress. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_9

Download citation

Publish with us

Policies and ethics