Skip to main content

Antimicrobial and Biocatalytic Potential of Haloalkaliphilic Actinobacteria

  • Chapter
Halophiles

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

Actinobacteria have the genetic potential for the production of wide variety of yet-to-discover secondary metabolites. They are known for their metabolic versatility that allows them to survive even under extreme environmental conditions. Further, considerable increase in the interest pertaining to the natural products originating from the saline and alkaline environments has brought haloalkaliphilic actinobacteria into the focus of intensive research. These organisms harbour huge potential for the discovery of new antibiotics and enzymes with novel properties. Besides, they have vast biosynthetic potential that remains unexplored. In the present chapter, we have evaluated the present state of research on the haloalkaliphilic actinobacteria and their unique antimicrobial properties. The highlights include the distribution of the haloalkaliphilic actinobacteria, their adaptation in different stress conditions, and mining of their unique antimicrobial and enzymatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adinarayana G, Venkateshan MR, Bapiraju VV, Sujatha P, Premkumar J, Ellaiah P, Zeeck A (2006) Cytotoxic compounds from the marine actinobacterium. Bioorg Khim 32:328–334

    CAS  PubMed  Google Scholar 

  • Akolkar AV (2009) Isolation and characterization of Halophilic Archaea: production, characterization and application of extracellular protease from Halobacterium sp. SP1. Ph.D. thesis, Maharaja Sayajirao University of Baroda

    Google Scholar 

  • Al MR, Al DM, Al IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7

    Article  CAS  Google Scholar 

  • Ammar YB, Matsubara T, Ito K, Iizuka M, Limpaseni T, Pongsawasdi P, Minamiura (2002) Characterization of a thermostable levansucrase from Bacillus sp. TH4-2 capable of producing high molecular weight levan at high temperature. J Biotechnol 99:111–119

    Article  PubMed  Google Scholar 

  • Amoroso MJ, Castro GR, Carlino FJ, Romero NC, Hill RT, Oliver G (1998) Screening of heavy metal-tolerant actinomycetes isolated from the Sali River. J Gen Appl Microbiol 44:129–132

    Article  CAS  PubMed  Google Scholar 

  • Anderson AS, Wellington MHE (2001) The taxonomy of streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    Article  CAS  PubMed  Google Scholar 

  • Anisha GS, Prema P (2006) Selection of optical growth medium for the synthesis of a galactosidase from mangrove actinomycetes. Indian J Biotechnol 5:376–379

    Google Scholar 

  • Asolkar RN, Jensen PR, Kauffman CA, Fenical W (2006) Daryamides AC, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69(12):1756–1759

    Article  CAS  PubMed  Google Scholar 

  • Baath E, Diaz-Ravina M, Frostegard A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Babu J, Pramod WR, George T (2008) Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  • Badoei-Dalfard A, Karami Z, Ravan H (2014) Purification and characterization of a thermo- and organic solvent-tolerant alkaline protease from Bacillus sp. JER02. Prep Biochem Biotechnol. doi:10.1080/10826068.2014.907176

    Google Scholar 

  • Baek KH, Kim HS (2009) Microbial community structure in hexadecane- and naphthalene-enriched gas station soil. J Microbiol Biotechnol 19:651–657

    PubMed  Google Scholar 

  • Baek KH, Yoon BD, Cho DH, Kim BH, Oh HM, Kim HS (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. J Microbiol Biotechnol 19:339–345

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiar SJ, Vevodova R, Hatti-Kaul Su XD (2003) Crystallization and preliminary X-ray analysis of an alkaline serine protease from Nesterenkonia sp. Acta Crystallogr 59:529–531

    Google Scholar 

  • Basilio A, Gonzalez I, Vicente MF, Gorrochategui J, Cabello A, Gonzalez A, Genilloud O (2003) Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol 95:814

    Article  CAS  PubMed  Google Scholar 

  • Belanger PA, Beaudin J, Roy S (2011) High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 85(2):92–97

    Article  PubMed  Google Scholar 

  • Bentley DR et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Huber R (2005) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204(2):433–451

    Article  Google Scholar 

  • Bui HB (2014) Isolation of cellulolytic bacteria, including actinomycetes, from coffee exocarps in coffee-producing areas in Vietnam. Int J Recycl Org Waste Agric 3:48

    Article  Google Scholar 

  • Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K (ed) Extremophiles handbook. Springer, Japan, pp 1203–1240. doi:10.1007/978-4-431-53898-1-12.1

  • Bursy J, Kuhlmann UA, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai M, Tang SK, Chen YG, Li Y, Zhang YQ, Li WJ (2009) Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., two novel halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 59:2471–2475

    Article  CAS  PubMed  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lopez R, Chamber MA, Palomares AJ (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Chakraborty S, Khopade A, Kokarea C, Mahadik K, Chopade B (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal B Enzym 58:17–23

    Article  CAS  Google Scholar 

  • Chakraborty S, Khopade A, Biao R, Jian W, Yang-Liu X, Mahadik K, Chopade B, Zhang L, Kokare C (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B Enzym 68(1):52–58

    Article  CAS  Google Scholar 

  • Chakraborty S, Raut G, Khopade A, Mahadik K, Kokare C (2012) Study on calcium ion independent α- amylase from haloalkaliphilic marine Streptomyces strain A3. Indian J Biotechnol 11:427–437

    CAS  Google Scholar 

  • Chen YG, Cui XL, Kroppenstedt RM, Stackebrandt E, Wen ML, Xu LH, Jiang CL (2008) Nocardiopsis quinghaiensis sp. nov., isolated from saline soil in China. Int J Syst Evol Microbiol 58:699–705

    Article  CAS  PubMed  Google Scholar 

  • Chen YG, Wang YX, Zhang YQ, Tang SK, Liu ZX, Xiao HD, Xu LH, Cui XL, Li WJ (2009) Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol 59(11):2708–2713

    Article  CAS  PubMed  Google Scholar 

  • Chen YG, Tang SK, Zhang YQ, Liu ZX, Chen QH, He JW, Cui XL, Li WJ (2010a) Zhihengliuella salsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles 14(4):397–402

    Article  CAS  PubMed  Google Scholar 

  • Chen YG, Zhang YQ, Tang SK, Liu ZX, Xu LH, Zhang LX, Li WJ (2010b) Nocardiopsis terrae sp. nov., a halophilic actinomycetes isolated from saline soil. Antonie Van Leeuwenhoek 98(1):31–38

    Article  PubMed  Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 5:1909–1913

    Article  Google Scholar 

  • Cowen LE (2008) The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198

    Article  CAS  PubMed  Google Scholar 

  • Dai HQ, Wang J, Xin YH, Pei G, Tang SK, Ren B, Ward A, Ruan JS, Li WJ, Zhang LX (2010) Verrucosispora sediminis sp. nov., a cyclodipeptide-producing actinomycete from deep-sea sediment. Int J Syst Evol Microbiol 60:1807–1812

    Article  CAS  PubMed  Google Scholar 

  • Das S, Lyla PS, Ajmal Khan S (2008) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26:166–177

    Article  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. In: Encyclopedia of life sciences. Nature Publishing Group, London, pp 1–9

    Google Scholar 

  • Dastager SG, Kim CJ, Lee JC, Agasar D, Park DJ, Li WJ (2008) Streptomyces deccanensis sp. nov., an alkaliphilic species isolated from soil. Int J Syst Evol Microbiol 58:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281(7):3866–3875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Devi A, Jeyarani M, Balakrishnan K (2006) Isolation and identification of marine actinomycetes and their potential in antimicrobial activity. Pak J Biol Sci 9(3):470–472

    Article  Google Scholar 

  • Dietera A, Hamm A, Fiedler HP, Goodfellow M, Muller WE, Brun R, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot 56:639–646

    Article  PubMed  Google Scholar 

  • Dixit V, Pant A (2000) Comparative characterization of two serine endopeptidases from Nocardiopsis sp. NCIM 5124. Biochim Biophys Acta 1523(2):261–268

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T, Hecht MK, Steere WC (1968) On some fundamental concepts of evolutionary biology. Evol Biol 2:1–34

    Google Scholar 

  • Ellaiah P, Ramana T, Raju K, Sujatha P, Sankar A (2004) Investigations on marine actinomycetes from bay of Bengal near Kakinada coast of Andhra Pradesh. Asian J Microbiol Biotechnol Environ 6:53–56

    Google Scholar 

  • Empadinhas N, Mendes V, Simoes C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673

    Article  CAS  PubMed  Google Scholar 

  • Fagerstrom R, Lahtinen T, Lantto R et al (2008) Production and secretion of actinomycete xylanases in a filamentous Trichoderma fungus. EP 0876494 B1

    Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 173(5):1–16

    Google Scholar 

  • Gao XG, Cao SG, Zhang K (2000) Production, properties and application to non aqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain. Enzym Microb Technol 27:74–82

    Article  Google Scholar 

  • Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W et al (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622

    Article  CAS  PubMed  Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) Studies on carboxymethyl cellulase produced by alkalothermophilic actinomycetes. Biores Technol 77:171–175

    Article  CAS  Google Scholar 

  • Ghorbel S, Kammoun M, Soltana H, Nasri M, Hmidet N (2014) Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. Bio Med Res Int. doi:10.1155/2014/345980

    Google Scholar 

  • Glen P, Eccleston PR, Brooks D (2008) The occurrence of bioactive Micromonosporae in aquatic habitats of the sunshine coast in Australia. Mar Drugs 6:243–261

    Article  Google Scholar 

  • Gohel SD, Singh SP (2012a) Cloning and expression of alkaline protease genes from two salt-tolerant alkaliphilic actinomycetes in E. coli. IJBIOMAC 50:664–671

    CAS  Google Scholar 

  • Gohel SD, Singh SP (2012b) Purification strategies, characteristics and thermodynamic analysis of highly thermostable alkaline protease from a salt tolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. J Chromatogr B 889–890:61–68

    Article  CAS  Google Scholar 

  • Gohel SD, Singh SP (2013) Characteristics and thermodynamics of thermostable protease from salt-tolerant alkaliphilic actinomycetes. Int J Biol Macromol 56:20–22

    Article  CAS  PubMed  Google Scholar 

  • Gohel SD, Singh SP (2015) Thermodynamics of a Ca2+ dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 72:421–429

    Google Scholar 

  • Goodfellow M, Stach JE, Brown R, Bonda AN, Jones AL, Mexson J, Fiedler HP, Zucchi TD, Bull AT (2012) Verrucosispora maris sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssomicins. Antonie Van Leeuwenhoek 101:185–193

    Article  CAS  PubMed  Google Scholar 

  • Gorajana A, Kurada BV, Peela S, Jangam P, Vinjamuri S, Poluri E et al (2005) 1-Hydroxy- 1-norresistomycin, a new cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. J Antibiot 58(8):526–529

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb D (1973) General considerations and implications of the actinomycetes. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic, London, pp 1–10

    Google Scholar 

  • Govender L, Naidoo L, Setati ME (2013) Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol 63:41–46

    Article  PubMed  Google Scholar 

  • Groth I, Schumann P, Rajney FA, Martin K, Schuetze B, Augsten K (1997) Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 47(3):788–794

    Article  CAS  PubMed  Google Scholar 

  • Gulder TAM, Moore BS (2010) Salinospora midenatural products: potent 20 sproteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed Engl 49:9346–9367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  • Haba E, Bresco D, Ferror C, Margues A, Busquets M, Manresa A (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzym Microb Technol 26:40–44

    Article  CAS  Google Scholar 

  • Hamedi J, Mohammadipanah F (2013) Antonio ventosa systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 17:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Mohammadipanah F, Von JM, Pötter G, Schumann P, Spröer C, Klenk HP, Kroppenstedt RM (2010) Nocardiopsis sinuspersici sp. nov., isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol 60:2346–2352

    Article  CAS  PubMed  Google Scholar 

  • Hamedi J, Mohammadipanah F, Pötter G, Spröer C, Schumann P, Goker M, Klenk HP (2011) Nocardiopsis arvandica sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 61:1189–1194

    Article  CAS  PubMed  Google Scholar 

  • Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161:301–312

    Article  CAS  PubMed  Google Scholar 

  • Heumann S, Eberl A, Pobeheim H (2006) New model substrates for enzymes hydrolyzing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods 69(1–2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Hippel PHV, Schleich T (1969) In: Timasheff SN, Fasman GD (eds) Structure and stability of biological macromolecules, vol 2. Marcel Dekker, New York, p 417

    Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach EM, Goodfellow M, Beil W, Kramer M, Imhoff JF, Sussmuth RD, Fiedle HP (2009) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104

    Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hozzein WN, Goodfellow M (2008) Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil. Int J Syst Evol Microbiol 58(11):2520–2524

    Article  CAS  PubMed  Google Scholar 

  • Hozzein WN, Li WJ, Ali MI, Hammouda O, Mousa AS, Xu LH, Jiang CL (2004) Nocardiopsis alkaliphila sp. nov., a novel alkaliphilic actinomycete isolated from desert soil in Egypt. Int J Syst Evol Microbiol 54:247–252

    Article  CAS  PubMed  Google Scholar 

  • Imada C, Koseki N, Kamata M, Kobayashi T, Hamada-Sato N (2007) Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater. Actinomycetologica 21:27–31

    Article  CAS  Google Scholar 

  • Jain PK, Jain R, Jain PC (2003) Production of industrially important enzymes by some actinomycetes producing antifungal compounds. Hindustan Antibiot Bull 46(1–4):29–33

    Google Scholar 

  • Jang HD, Chang KS (2005) Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter. Biotechnol Lett 27(4):239–242

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG, Lanthier PH, Gochnauer MB (1986) Studies of two strains of Actinopolyspora halophila, an extremely halophilic actinomycete. Arch Microbiol 143(4):370–378

    Article  CAS  Google Scholar 

  • Johnvesly B, Naik GK (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemical defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  • Jones BE, Wilhelmus AHK, Solingen PV, Weyler W (2003) Cellulase producing actinomycetes, cellulase produced there from and method of producing same. US Patent 6566112

    Google Scholar 

  • Jones BE, Wilhelmus AHK, Solingen PV, Weyler W (2004) Cellulase producing actinomycetes, cellulase produced there from and method of producing same EP 1408108 B1

    Google Scholar 

  • Joo HS, Chang CS (2005) Oxidant and SDS stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J Appl Microbiol 98(2):491–497

    Article  CAS  PubMed  Google Scholar 

  • Joo WA, Kim CW (2005) Proteomics of Halophilic archaea. J Chromatogr B 815:237–250

    Article  CAS  Google Scholar 

  • Jose PA, Jebakumar SRD (2012) Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aquat Biosyst 8:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jose PA, Santhi VS, Jebakumar SRD (2011) Phylogenetic affiliation, antimicrobial potential and PKS gene sequence analysis of moderately halophilic Streptomyces sp. inhabiting an Indian saltpan. J Basic Microbiol 51:348–356

    Article  PubMed  CAS  Google Scholar 

  • Joshi RH, Dodia MS, Singh SP (2008) Optimization of culture parameters for production of commercially valuable alkaline protease from a haloalkaliphilic bacterium isolated from sea water. Biotechnol Bioprocess Eng 13:552–559

    Article  CAS  Google Scholar 

  • Kamarudin NHA, Rahman RNZRA, Ali MSM, Leow TC, Basri M, Salleh AB (2014) A New cold-adapted, organic solvent stable lipase from mesophilic Staphylococcus epidermidis AT2. Protein J 33:296–307

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Ray RC (2008) Statistical optimization of α-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Pol J Microbiol 57(1):49–57

    CAS  PubMed  Google Scholar 

  • Kerkar S (2004) Studies on bacteria of the dissimilatory reductive processes of the sulphur cycle from the salt pans of Goa. Ph.D. Thesis, Goa University, Goa

    Google Scholar 

  • Khalesi E, Bonjarghs AS (2006) Anti yeast activity Streptomyces olivaceus strain 115 against Candida albicans. J Appl Sci 6:524–526

    Article  CAS  Google Scholar 

  • Khanna M, Solanki R, Lal R (2011) Selective isolation of rare actinomycetes producing novel antimicrobial compounds. Int J Adv Biotechnol Res 2:357–375

    CAS  Google Scholar 

  • Kikani BA, Shukla RJ Singh SP (2010) Biocatalytic potential of thermophilic bacteria and actinomycetes. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 1000–1007

    Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Kock I, Maskey RP, Biabani MAF, Helmke E, Laatsch H (2005) 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived streptomycetes. J Antibiot 58(8):530–535

    Article  CAS  PubMed  Google Scholar 

  • Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2004) Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from West Coast of India. Curr Sci 86(4):593–597

    Google Scholar 

  • Kumar R, Kumar S (2014) Bio-prospecting of actinomycetes and its diversity in various environments: a review. Curr Discov 3(1):16–32

    Google Scholar 

  • Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Sahu MK, Sivakumar K, Kannan L (2006) Occurrence of antagonistically active extra-cellular enzyme producing actinomycetes in the alimentary canal of estuarine fishes. Asian J Microbiol Biotechnol Environ 8:707–710

    Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Lee SD (2006) Blastococcus jejuensis sp. nov., an actinomycetes from beach sediment, and emended description of the genus Blastococcus Ahrens and Moll 1970. Int J Syst Evol Microbiol 56:2391–2396

    Article  CAS  PubMed  Google Scholar 

  • Lescic I, Zehl M, Muller R, Vukelic B, Abramic M, Pigac J, Allmaier G, Kojic-Prodic B (2004) Structural characterization of extracellular lipase from Streptomyces rimosus: assignment of disulfide bridge pattern by mass spectrometry. Biol Chem 385(12):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43(4):410–416

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Xu P, Tang SK, Xu LH, Kroppenstedt RM, Stackebrandt E, Jiang CL (2003) Prauserella halophila sp. nov. and Prauserella alba sp. nov., moderately halophilic actinomycetes from saline soil. Int J Syst Evol Microbiol 53(5):1545–1549

    Article  CAS  PubMed  Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. Isolate M045. J Nat Prod 68:349–353

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Kroppenstedt RM, Wang D, Tang SK, Lee JC, Park DJ, Kim CJ, Xu LH, Jiang CL (2006) Five novel species of the genus nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina Li et al. 2004. Int J Syst Evol Microbiol 56:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tang SK, Chen YG, Wu JY, Zhi XY, Zhang YQ, Li WJ (2009) Prauserella salsuginis sp. nov., Prauserella flava sp. nov., Prauserella aidingensis sp. nov. and Prauserella sediminis sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 59:2923–2928

    Article  CAS  PubMed  Google Scholar 

  • Lombo F, Velasco A, dela Calle F, Brana AF, Sanchez- Pulles JM, Mendez C, Salas JA (2006) Deciphering the biosynthesis of the antitumor thiocoraline from a marine actinomycete and its expression in two streptomyces species. Chembiochem 7:366–376

    Article  CAS  PubMed  Google Scholar 

  • Luo HY, Wang YR, Miao LH, Yang PL, Shi PJ, Fang CX, Yao B, Fan YL (2009) Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 59:863–868

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk MEM (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24(10):2331–2338

    Article  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Mahyudin NA, Blunt JW, Cole ALJ, Munro MHG (2012) The isolation of a new S-methyl benzothioate compound from a marine-derived Streptomyces sp. J Biomed Biotechnol, article ID 894708. doi:10.1155/2012/894708

  • Malviya N, Yadav AK, Solanki MK, Arora DK (2014) Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake. India Ann Microbiol. doi:10.1007/s13213-014-0831-1

    Google Scholar 

  • Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom STC, Lam KS, Mosca DA, Lloyd GK, Potts BCM (2005) Lajollamycin, a nitro-tetraene spiro-b-lactone-c-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68(2):240–243

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Actinobacterial melanins: current status and perspective for the future. World J Microbiol Biotechnol 29:1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Gen Appl Microbiol 55(3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Mehta VJ, Thumar JT, Singh SP (2006) Production of alkaline protease from an alkaliphilic actinomycete. Bioresour Technol 97(14):1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Meklat A, Bouras N, Zitouni A, Mathieu F, Lebrihi A, Schumann P, Spröer C, Klenk HP, Sabaou N (2013) Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from Saharan soil of Algeria. Antonie Van Leeuwenhoek 103(4):771–776

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Miao V, Davies J (2010) Actinobacteria: the good, the bad, and the ugly. Antonie Van Leeuwenhoek 98:143–150

    Article  PubMed  Google Scholar 

  • Mitra P, Chakrabartty PK (2005) An extracellular protease with depilation activity from Streptomyces nogalator. J Sci Ind Res 64(12):978–983

    CAS  Google Scholar 

  • Mitsuiki S, Sakai M, Moriyama Y, Goto M, Furukawa K (2002) Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 66(1):164–167

    Article  CAS  PubMed  Google Scholar 

  • Miyashita K, Fujii T, Sawada Y (1991) Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. J Gen Microbiol 137(9):2065–2072

    Article  CAS  Google Scholar 

  • Moosa MY, Sobel JD, Elhalis H, Du W, Akins RA (2004) Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother 48:161–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreira KA, Albuquerque BF, Teixeira MFS, Porto ALF, Lima FJL (2002) Application of protease from Nocardiopsis sp. as a laundry detergent additive. World J Microbiol Biotechnol 18(4):307–312

    Article  CAS  Google Scholar 

  • Moreira AC, Ferreira D, de Almeida FG, Rodrigues-Filho E, Fernandes JB, Silva MFGF, Vieira PC, Pagnocca FC, Souza DHF (2014) Molecular and kinetic characterization of two extracellular xylanases isolated from Leucoagaricus gongylophorus. Appl Biochem Biotechnol 173:694–704

    CAS  PubMed  Google Scholar 

  • Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using imperata cylindrical grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. J Biochem Eng 39:353–361

    Article  CAS  Google Scholar 

  • Murphy BT, Narender T, Kauffman CA, Woolery M, Jensen PR, Fenical W (2010) Saliniquinones AF, new members of the highly cytotoxic anthraquinone-c-pyrones from the marine actinomycete Salinispora arenicola. Aust J Chem 63(6):929–934

    Article  CAS  Google Scholar 

  • Murugan M, Srinivasan M, Sivakumar K, Sahu MK, Kannan L (2007) Characterization of an actinomycete isolated from the estuarine finfish, Mugil cephalus Lin. (1758) and its optimization for cellulase production. J Sci Ind Res 6:388–393

    Google Scholar 

  • Nagarajan J, Nawawi NM, Ibrahim AL (2014) Rhodococcus UKMP-5M, an endogenous lipase producing actinomycete from Peninsular Malaysia. Biologia 69(2):123–132

    Article  CAS  Google Scholar 

  • Nawani NN, Kapadnis BP, Das AD, Rao AS, Mahajan SK (2002) Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J Appl Microbiol 93(6):965–975

    Article  CAS  PubMed  Google Scholar 

  • Nieto JJ, Vargas C (2002) Synthesis of osmoprotectants by moderately halophilic bacteria: genetic and applied aspects. In: Pandalai SG (ed) Recent research developments in microbiology. Research Signpost, Kerala, pp 403–418

    Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ninawe S, Kuhad RC (2005) Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. J Appl Microbiol 99(5):1141–1148

    Google Scholar 

  • Ninawe S, Lal R, Kuhad RC (2006) Isolation of three xylanase-producing strains of actinomycetes and their identification using molecular methods. Curr Microbiol 53:178–182

    Article  CAS  PubMed  Google Scholar 

  • Nyyssola A, Leisola M (2001) Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch Microbiol 176(4):294–300

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Gemba Y, Yutori Y, Doukyu N, Ishimi K, Ishikawa H (2007) Stabilities and conformational transitions of various proteases in the presence of an organic solvent. Biotechnol Prog 23(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol 63:334–348

    CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pandey S, Singh SP (2012) Organic solvent tolerance of α-amylase from haloalkaliphilic bacteria as a function of pH, temperature and salt concentration. Appl Biochem Biotechnol 166:1747–1757

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Panwar D, Srivastava PK, Kapoor M (2014) Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal Agric Biotechnol 3:118–125

    Google Scholar 

  • Parungawo MM, Maceda EBG, Villano MAF (2007) Screening of antibiotic producing actinomycetes from marine, brackish and terrestrial sediments of Samal Islands, Philippines. J Sci Res 4:29–38

    Google Scholar 

  • Patel RK, Dodia MS, Singh SP (2006) Purification and characterization of alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. Process Biochem 41(9):2002–2009

    Article  CAS  Google Scholar 

  • Pathom-aree W, Stach JEM et al (2006) Diversity of actinomycetes isolated from challenger deep sediment (10,898 m) from Marina Trench. Extremophiles 10:181–189

    Article  CAS  PubMed  Google Scholar 

  • Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483

    Article  CAS  Google Scholar 

  • Phoebe CH, Combie J, Albert FG, Tran KV, Cabrera J, Correira HJ, Guo Y, Lindermuth J (2001) Extremophilic organisms as an unexplored source of antifungal compounds. J Antibiot 54:56–65

    Google Scholar 

  • Prakash D, Nawani N, Prakash M, Bodas M, Mandal A (2013) Actinomycetes: a repertory of green catalysts with a potential revenue resource. BioMed Res Int. doi:10.1155/2013/264020

    Google Scholar 

  • Priya BS, Stalin T, Selvam K (2012) Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes (Streptomyces albus and Streptomyces hygroscopicus) in the production of ecofriendly alternative energy from waste. Afr J Biotechnol 11(78):14320–14325

    Google Scholar 

  • Procopio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16(5):466–471

    Article  PubMed  Google Scholar 

  • Purohit MK, Singh SP (2014) Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and haloalkaliphilic bacterium O.M.E12. Process Biochem 49:61–68

    Article  CAS  Google Scholar 

  • Rahman RNZRA, Basri M, Salleh AB (2003) Thermostable alkaline protease from Bacillus stearothermophilus F1; nutritional factors affecting protease production. Ann Microbiol 53:199–210

    CAS  Google Scholar 

  • Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25(12):2103–2111

    Article  CAS  Google Scholar 

  • Rauert N, Galbraith W, Selitrennikoff CP (2001) Extremophilic organisms as an unexplored source of antifungal compounds. J Antibiot 54:56–65

    Article  PubMed  Google Scholar 

  • Raval VH, Pillai S, Rawal CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 49:955–962

    Article  CAS  Google Scholar 

  • Remya M, Vijayakumar R (2008) Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Med Biol 15(1):13–19

    Google Scholar 

  • Rifaat HM, Nagieb ZA, Ahmed YM (2006) Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp. Appl Ecol Environ Res 4(1):151–160

    Article  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sabry SA, Ghanem NB, Abu-Ella GA, Schumann P, Stackebrandt E, Kroppenstedt RM (2004) Nocardiopsis aegyptia sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 54:453–456

    Article  CAS  PubMed  Google Scholar 

  • Sangamwar AT, Deshpande UD, Pekamwar SS (2008) Antifungals: need to search for a new molecular target. Indian J Pharm Sci 70:423–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos H, Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Saha M, Roy D, Jaisankar P, Das S, Roy GL, Gachhui R, Sen T, Mukherjee J (2008) Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the sundarbans in a niche-mimic bioreactor. Mar Biotechnol 10:518–526

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90

    Google Scholar 

  • Schippers A, Bosecker K, Willscher S, Spröer C, Schumann P, Kroppenstedt RM (2002) Nocardiopsis metallicus sp. nov., a metal-leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol 52:2291–2295

    CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and species richness. Appl Environ Microbiol 71(3):1501–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2006) Introducing SONS, A tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol 72(10):6773–6779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK (2011) Assessment of molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes using bioinformatics approaches. M. Phil. thesis, Saurashtra University Rajkot

    Google Scholar 

  • Sharma CK, Kanwar SK (2012) Purification of a novel thermophilic lipase from B. licheniformis MTCC-10498. Int Res J Biol Sci 1:43–48

    Google Scholar 

  • Sharma AK, Gohel S, Singh SP (2012) Actinobase: database on molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes. Bioinformation 8(11):535–538

    Article  PubMed Central  PubMed  Google Scholar 

  • Sibanda T, Mabinya LV, Mazomba N, Akinpelu DA, Bernard K, Olaniran A, Okoh AI (2010) Antibiotic producing potentials of three freshwater actinomycetes isolated from the eastern cape province of south Africa. Int J Mol Sci 11:2612–2623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SP, Thumar JT, Gohel SD, Purohit MK (2010) Molecular diversity and enzymatic potential of salt-tolerant alkaliphilic actinomycetes. In: Mendez-Vilas (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 280–286

    Google Scholar 

  • Singh SP, Raval VH, Purohit MK, Pandey S, Thumar JT, Gohel SD, Akbari VG, Rawal CM (2012) Haloalkaliphilc bacteria and actinobacteria from the saline habitats: new opportunities for biocatalysis and bioremediation. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer (Library of Congress Control Number: 2011944027), pp 415–429. doi:10.1007/978-94-007-2229-3_19

  • Singh SP, Thumar JT, Gohel S, Kikani BA, Shukla R, Sharma A, Dangar K (2013a) Actinomycetes from marine habitats and their enzymatic potential. In: Trincome A (ed) Marine enzymes for bicatalysis. Woodhead Publishing Series in Biomedicine (Oxford) Ltd, Oxford (Library Congress Number: 2013948122), pp 191–214

    Google Scholar 

  • Singh SP, Thumar JT, Gohel SD, Kikani B, Shukla R, Sharma A, Dangar K (2013b) Actinomycetes from marine habitats and their enzymatic potential. In: Trincone A (ed) Marine enzymes for biocatalysis: sources, biocatalytic characteristics and bioprocesses of marine enzymes. Woodhead Publishing Series in Biomedicine, Elsevier, pp 191–214

    Chapter  Google Scholar 

  • Sinha R, Khare SK (2014) Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol. doi:10.3389/fmicb.2014.00165

    PubMed Central  PubMed  Google Scholar 

  • Siroosi M, Amoozegar MA KK, Fazeli M, Rezaei MH (2014) Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 18:25–33

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar K, Sahu MK, Manivel PR, Kannan L (2006) Studies on L-glutaminase producing actinomycetes strain LG-10 from the estuarine fish, Chanos chanos (Forskal, 1775). Indian J Exp Biol 44:256–258

    CAS  PubMed  Google Scholar 

  • Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine actinobacteria in India. Indian J Microbiol 47(3):186–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonya HM, Galal AM (2005) Identification and antiviral activities of some halotolerant streptomycetes isolated from Qaroon Lake. Int J Agric Biol 7(5):747–753

    Google Scholar 

  • Stach JE, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 10:6189–6200

    Article  CAS  Google Scholar 

  • Stackebrandt E (2000) Defining taxonomic ranks. In: Dworking M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  • Stamford TLM, Stamford NP, Coelho LCBB, Ara’ujo JM (2001) Production and characterization of a thermostable α-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 76(2):137–141

    Article  CAS  PubMed  Google Scholar 

  • Sundaram R, Samikan K, Samuel JI, Murugesan G (2010) Antagonistic activity of marine actinomycetes from Arabian Sea coast. Arch Appl Sci Res 2(6):273–280

    Google Scholar 

  • Susithra MP, Thenmozhi M, Kannabiran K (2009) Anticandidal activity of Streptomyces paraguyensis isolated from marine sediment samples collected at the Puducherry coast, Bay of Bengal, India. Pharmacology 2:527–537

    Google Scholar 

  • Suthindhiran K, Kannabiran K (2009) Cytotoxic and antimicrobial potential of actinomycete species Saccharopolyspora salina VITSDK4 isolated from the Bay of Bengal Coast of India. Am J Infect Dis 5(2):90–98

    Article  CAS  Google Scholar 

  • Syed DG, Agasar D, Pandey A (2009) Production and partial purification of alpha-amylase from a novel isolate Streptomyces gulbargensis. J Ind Microbiol Biotechnol 36(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Tang SK, Li WJ, Dong W, Zhang YG, Xu LH (2003) Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 17:06–10

    Article  CAS  Google Scholar 

  • Tang SK, Wang Y, Guan TW, Lee JC, Kim CJ, Li WJ (2010) Amycolatopsis halophila sp. nov., a halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 60:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Tang SK, Wang Y, Klenk HP, Shi R, Lou K, Zhang YJ, Chen C, Ruan JS, Li WJ (2011a) Actinopolyspora alba sp. nov. and Actinop-olyspora erythraea sp. nov., isolated from a salt field, and reclassification of Actinopolyspora iraqiensis Ruan et al. 1994 as a heterotypic synonym of Saccharomonospora halophile. Int J Syst Evol Microbiol 61:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Tang SK, Zhi XY, Wang Y, Shi R, Lou K, Xu LH, Li WJ (2011b) Haloactinopolyspora alba gen. nov., sp. nov., a novel halophilic filamentous actinomycete isolated from a salt lake in China, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord nov. Int J Syst Evol Microbiol 61:194–200

    Article  CAS  PubMed  Google Scholar 

  • Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocess: a review. Process Biochem 38(1):1327–1340

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2007a) Secretion of an alkaline protease from salt-tolerant and alkaliphilic, Streptomyces clavuligerus strain Mit-1. Braz J Microbiol 38:1–9

    Article  Google Scholar 

  • Thumar JT, Singh SP (2007b) Two – step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Chromatogr 854:198–203

    CAS  Google Scholar 

  • Thumar JT, Singh SP (2009) Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 36:211–218

    Article  CAS  PubMed  Google Scholar 

  • Thumar JT, Singh SP (2011) Repression of alkaline protease in salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1 under the influence of amino acids in minimal medium. Biotechnol Bioproc Eng 16:1180–1186

    Article  CAS  Google Scholar 

  • Thumar JT, Dhulia K, Singh SP (2010) Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 26:2081–2087

    Article  CAS  Google Scholar 

  • Tian XP, Zhi XY, Qiu YQ, Zhang YQ, Tang SK, Xu LH, Zhang S, Li WJ (2009) Sciscionella marina gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China sea. Int J Syst Evol Microbiol 59:222–228

    Article  CAS  PubMed  Google Scholar 

  • Tian XP, Xu Y, Zhang J, Li J, Chen Z, Kim CJ, Li WJ, Zhang CS, Zhang S (2012) Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China sea. Antonie Van Leeuwenhoek 102(2):335–343

    Article  CAS  PubMed  Google Scholar 

  • Tresner HD, Hayes JS, Backus EJ (1968) Differential tolerance of streptomycetes to sodium chloride as a taxonomic tool. Appl Microbiol 16:1134–1136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsujibo H, Kubota T, Yamamoto M, Miyamoto K, Inamori Y (2003) Characteristics of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl Environ Microbiol 69:894–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van SP, Meijer D, Van der Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel Streptomycete isolated from an East African soda lake. Extremophiles 5(5):333–341

    Article  Google Scholar 

  • Vasavada S, Thumar J, Singh SP (2006) Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci 91(10):1393–1397

    CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ventosa A, Sanchez-Porro C, Martı’n S, Mellado E (2005) Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In: Gunde-Cimerman A, Oren A, Plemenitas A (eds) Adaptation of life at high salt concentrations in archaea, bacteria and eukarya. Springer, Heidelberg, pp 337–354

    Chapter  Google Scholar 

  • Vigal T, Gil JF, Daza A, Garcia-Gonzalez MD, Martin JF (1991) Cloning characterization and expression of an alpha amylase gene from Streptomyces griseus IMRU 3570. Mol Gen Genomics 225:278–288

    Article  CAS  Google Scholar 

  • Vijayakumar R, Muthukumar C, Thajuddin N, Panneerselvam A, Saravanamuthu R (2007) Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica 21:59–65

    Article  CAS  Google Scholar 

  • Vijayakumar R, Selvam KP, Muthukumar C, Thajuddin N, Panneer selvam A, Saravanamuthu R (2012) Antimicrobial potentiality of a halophilic strain of Streptomyces sp. VPTSA18 isolated from the salt pan environment of Vedaranyam, India. Ann Microbiol 62:1039–1047

    Article  Google Scholar 

  • Vimal V, Rajan BM, Kannabira K (2009) Antimicrobial activity of marine actinomycete, Nocardiopsis sp. VITSVK 5 (FJ973467) Asian. J Med Sci 1:57–63

    CAS  Google Scholar 

  • Vujaklija D, Abramic M, Lescic I, Marsic T, Pigac J (2003) Streptomyces rimosus GDS(L) lipase: production, heterologous overexpression and structure-stability relationship. Food Technol Biotechnol 41(1):89–93

    CAS  Google Scholar 

  • Wadetwar RN, Patil AT (2013) Isolation and characterization of bioactive actinomycetes from soil in and around Nagpur. Int J Pharm Sci Res 4(4):1428–1433

    CAS  Google Scholar 

  • Wang J, Li Y, Bian J, Tang SK, Ren B, Chen M, Li WJ, Zhang LX (2010) Prauserella marina sp. nov., isolated from ocean sediment of the South China sea. Int J Syst Evol Microbiol 60:985–989

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang Z, Cheng B, Zhang J, Li C, Liu X, Yang C (2014) High secretory production of an alkaliphilic actinomycete xylanase and functional roles of some important residues. World J Microbiol Biotechnol. doi:10.1007/s11274-014-1630-3

    Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  CAS  PubMed  Google Scholar 

  • Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic salinosporamides from marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Guan T, Jiang H, Zhi X, Tang S, Dong H, Zhang L, Li W (2009) Diversity of actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13(4):623–632

    Article  PubMed  Google Scholar 

  • Xu S, Yan L, Zhang X, Wang C, Feng G, Li J (2014) Nocardiopsis fildesensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 64:174–179

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Zhang LP, Guo LG, Shi N, Lu Z, Zhang X (2008) Nocardiopsis valliformis sp. nov, an alkaliphilic actinomycete isolated from alkali lake soil in China. Int J Syst Evol Microbiol 8:1542–1546

    Article  CAS  Google Scholar 

  • Yong BS, Dong-EK GDK, Hyun WK, Soo WN, Young TK, Jae HL (2009) Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 59:2769–2772

    Article  CAS  Google Scholar 

  • Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327(2):347–357

    Article  PubMed  CAS  Google Scholar 

  • Zafrilla B, Martinez-Espinosa RM, Alonso MA, Bonete MJ (2010) Biodiversity of Archaea and floral of two inland saltern ecosystems in the AltoVinalopó Valley, Spain. Saline Syst 6:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JW, Zeng RY (2008) Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Mar Biotechnol 10:75–82

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, An R, Wang J, Sun N, Zhung S, Hu J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Huang J, Ou Z, Wang H, Wang R (2000) Conditions of enzyme production and properties of alkaline lipase by Streptomyces Z94-2. Wei Sheng Wu Xue Bao 40:75–79

    CAS  PubMed  Google Scholar 

  • Zitouni A, Boudjella H, Lamari L, Badji B, Mathieu F, Lebrihi A, Sabaou N (2005) Nocardiopsis and Saccharothrix genera in Saharan soils in Algeria: isolation, biological activities and partial characterization of antibiotics. Res Microbiol 156:984–993

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gohel, S.D., Sharma, A.K., Dangar, K.G., Thakrar, F.J., Singh, S.P. (2015). Antimicrobial and Biocatalytic Potential of Haloalkaliphilic Actinobacteria. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_2

Download citation

Publish with us

Policies and ethics