Skip to main content

Perspectives and Application of Halophilic Enzymes

  • Chapter
Halophiles

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

The world of halophilic bacteria is quite diverse. We find representatives of three domains of life, archaea, bacteria and eukarya that are adapted to salt concentration upto saturation. The micro-organisms able to grow upto NaCl concentration (>300 g/l) are found all over the small subunit rRNA based tree of life. Their metabolic diversity is high as well encompassing oxygenic and anoxygenic phototrophs, aerobic heterotrophs, denitrifiers, sulfate reducers, fermenters and methanogens. The proteins of halophilic bacteria are magnificently engineered to function in a milieu containing 2–5 M salt. The proteins and encoding genes of halophiles represent a valuable repository and resource for reconstruction and visualizing processes of habitat selection and adaptive evolution. Search for new enzymes endowed with novel activities and enhanced stability continues to be desirable character for important commercial production. These poly extremophiles are excellent source of enzymes and metabolites possessing inherent ability to function in extreme conditions viz high salt, alkaline pH and facilitating catalysis for biotechnological application in food processing, industrial bioconversion and bioremediation. In brief, we have just begun to realize the great potential and true extent of diversity and suitable industrial applications possible from halophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amoozegar MA, Fatemi ZA, Karbalaei-Heidari HR, Razavi MR (2007) Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiol Res 162:369–377

    Article  CAS  Google Scholar 

  • Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48:160–167

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aygan A, Arikan B (2008) A new haloalkaliphilic, thermostable endoglucanse from moderately halophilic Bacillus sp. C14 isolated from Van Soda Lake. Int J Agric Biol 10:369–374

    CAS  Google Scholar 

  • Aygan A, Arikan B, Korkmas H, Dincer S, Colak O (2008) Highly thermostable and alkaline α- amylase from a halotolerant alkaliphilic Bacillus sp. AB68. Braz J Microbiol 39:547–553

    PubMed Central  PubMed  Google Scholar 

  • Bakhtiar S, Estiveira RJ, Hatti-Kaul R (2005) Substrate specificity of alkaline protease from alkaliphilic feather-degrading Nesterenkonia sp. AL20. Enzyme Microb Technol 37:534–540

    Article  CAS  Google Scholar 

  • Balasubramanian S, Pal S, Bagchi B (2002) Dynamics of water molecules at the surface of an aqueous micelle: atomistic molecular dynamics simulation study of a complex system. Curr Sci 82:845–854

    CAS  Google Scholar 

  • Bolobova AV, Simankova MV, Markovitch NA (1992) Cellulase complex of a new halophilic bacterium, Halocella Cellulolytica. Microbiology 61:557–562

    Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzyme 41:21–26

    Article  CAS  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ et al (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci 103:4846–4851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Volz PA (2000) Newly discovered halophilic fungi in the Dead Sea (Israel). In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer, Dordrecht, pp 241–252

    Google Scholar 

  • Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the great salt plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58(3):519–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakraborty S, Khopade A, Kokare C, Mahadika K, Chopade B (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal B Enzyme 58:17–23

    Article  CAS  Google Scholar 

  • Chand S, Mishra P (2003) Research and application of microbial enzymes. India’s contribution. Adv Biochem Eng Biotechnol 85:95–124

    CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Kern R, Mistou MY, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42°C. J Bacteriol 186:8149–8152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cojoc R, Merciu S, Popescu G, Dumitru L, Kamekura M, Enache M (2009) Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Rom Biotechnol Lett 14:4658–4664

    Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto J (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridian. FEMS Microbiol Lett 183:67–71

    CAS  PubMed  Google Scholar 

  • Dang H, Zhu H, Wang J, Li T (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25:71–79

    Article  CAS  Google Scholar 

  • Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol 117(3):307–312

    Article  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. Encyclopedia of life sciences. Macmillan Press, London

    Google Scholar 

  • DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Dym O, Menarch M, Sussmann JL (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:1344–1346

    Article  CAS  PubMed  Google Scholar 

  • Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals an abundance of halophilic archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70(4):2230–2239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    CAS  PubMed  Google Scholar 

  • Enache M, Kamekura M (2010) The halophilic enzyme and their economical values. Rom J Biochem 47(1):47–59

    CAS  Google Scholar 

  • Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, Jijakli H, Sadfi-Zouaoui N (2009) Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol 106:83–846

    Article  Google Scholar 

  • Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9:85–89

    Article  CAS  PubMed  Google Scholar 

  • García MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728

    Article  PubMed  Google Scholar 

  • Giridhar PV, Chandra TS (2010) Production of novel haloalkali- thermostable xylanase by a newly isolated moderately halophilic and alkali tolerant Gracibacillus sp. TSCPVG. Process Biochem 45:1730–1737

    Article  CAS  Google Scholar 

  • Govender L, Naidoo L, Setati ME (2009) Isolation of hydrolase producing bacteria from Sua pan solar salterns and the production of endo-1,4-β-xylanase from a newly isolated haloalkaliphilic Nesterenkonia sp. Afr J Biotechnol 8:5458–5466

    CAS  Google Scholar 

  • Grant WD, Kamekura M, Mc Genity TJ, Ventosa A (2001) Class III. Halobacteria class. In: Boone DR, Castenholz RW (eds) Bergery’s manual of systematic bacteriology. Springer, New York, pp 294–334

    Google Scholar 

  • Gunde- Cimerman NS, Zalar P, de Hoog GS, Plemenitas A (2000) Hypersaline waters in salterns-natural ecological niches for black yeasts. FEMS Microbiol Ecol 32(3):235–240

    CAS  Google Scholar 

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Guzmán MN, Vargas VA, Antezana H, Svoboda M (2008) Lipolytic enzyme production by halophilic/halotolerant microorganisms isolated from Laguna Verde, Bolivia. Revista Boliviana De Química 25(1):14–23

    Google Scholar 

  • Hanelt I, Muller V (2013) Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillus halophilus to its environment. Life 3:234–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K, Fukui T, Nakamura S (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 12:201

    Google Scholar 

  • Hiraga K, Nishikata Y, Namwong S, Tanasupawat S, Takada K, Oda K (2005) Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp.RF2-5. Biosci Biotechnol Biochem 69:38–44

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Holliger P (2010) Chemical biotechnology a marriage of convenience and necessity. Curr Opin Biotechnol 21:711–712

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Onishi H (1976) Effect of magnesium and some nutrients on the growth and nuclease formation of a moderately halophile Micrococcus varians var. halophilus. Can J Microbiol 22:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Onishi H (1983) Inactivation of nuclease H of the moderate halophilic Micrococcus varians sp. halophiles during cultivation in the presence of salting in type salts. Can J Microbiol 29:46–51

    Article  CAS  Google Scholar 

  • Kamekura M, Seno Y (1990) A halophilic extracellular protease from a halophilic archaebacterium strain 172P1. Biochem Cell Biol 68:352–359

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Seno Y, Holmes ML, Dyall-Smith ML (1992) Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J Bacteriol 174:736–742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karan R, Singh S, Kapoor S, Khare S (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28:136–145

    Article  CAS  Google Scholar 

  • Karbalaei-Heidari HR, Amoozegar MA, Hajighasemi M, Ziaee AA, Ventosa A (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbiol Biotechnol 36:21–27

    Article  CAS  PubMed  Google Scholar 

  • Khunt M, Pandhi N, Rana A (2011) Amylase from moderate halophiles isolated from wild ass excreta. Int J Pharm Biol Sci 1:586–592

    Google Scholar 

  • Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T (1994) Cloning, expression and nucleotide sequencing of α- amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176:5131–5134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolp S, Pietsch M, Galinski EA, Gutschow M (2006) Compatible solutes as protectants for zymogens against proteolysis. Biochim Biophys Acta 1764:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamosa P, Turner DL, Ventura R, Maycock C, Santos H (2003) Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur J Biochem 270:4606–4614

    Article  CAS  PubMed  Google Scholar 

  • Li AN, Li DC (2009) Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 106:369–380

    Article  CAS  PubMed  Google Scholar 

  • Lin QS, Chen SH, Hu MY, Rizwan-ul-Haq M, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8(1):45–56

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Maturrano L, Valens-Vadell M, Roselló-Mora R, Antón J (2006) Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Perú. Int J Syst Evol Microbiol 56:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra BR, Banerjee UC, Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastella sp. J Biotechnol 60:113–117

    Article  CAS  Google Scholar 

  • Moreno ML, García MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol Ecol 68:59–71

    Article  Google Scholar 

  • Moreno MDL, Dolores P, María TG, Encarnación M (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2009) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14(2):161–169

    Article  PubMed Central  PubMed  Google Scholar 

  • Onishi H, Hidaka O (1978) Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile Micrococcus halobius. Appl Environ Microbiol 38:616–620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Onishi H, Mori T, Takeuchi S, Tani L, Kobayashi T, Kamekura M (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification and characterization. Appl Environ Microbiol 45:24–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:58–63

    Article  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Heldal M, Norland S (1997) X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can J Microbiol 43:588–592

    Article  CAS  Google Scholar 

  • Ovreas L, Bourne D, Sandaa RA, Casamayor EO, Benlloch S, Goddard V (2003) Response of bacterial and viral communities to nutrient manipulations in sea water mesocosms. Aquat Microb Ecol 31:109–121

    Article  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Pandit AS, Joshi MN, Bhargava P, Ayachit GN, Shaikh IM, Saiyed ZM, Saxena AK, Bagatharia SB (2014) Metagenomes from the saline desert of Kutch. Genome A 2(3):1

    Google Scholar 

  • Park JH, Ha HJ, Lee WK, Généreux-Vincent T, Kazlauskas RJ (2009) Molecular basis for the stereoselective ammoniolysis of N-alkyl aziridine-2-carboxylates catalyzed by Candida antarctica lipase B. Chembiochem 10:2213–2222

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Jain N, Madamwar D (1993) Production of α-amylase from Halobacterium halobium. World J Microbiol Biotechnol 9:25–28

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Prakash B, Vidyasagar M, Madhukumar MS, Muralikrishna G, Sreeramulu K (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylase from Chromohalobacter sp. TVSP 101. Process Biochem 44:210–215

    Article  CAS  Google Scholar 

  • Raj E, Suman CE (2010) Purification and characterization of a new hyperthermostable, allosamidin-insensitive and denaturation-resistant chitinase from the hyper thermophilic archaeon Thermococcus chitonophagus. Extremophiles 7:43–53

    Google Scholar 

  • Ratnakar D (2013) Use of halophile physiology and adaptations in various industrial applications. Res J Biotechnol 8(2):1–3

    Article  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Roessler M, Muller V (2001) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128

    Article  CAS  PubMed  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb Technol 16:266–275

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90

    Google Scholar 

  • Shivanand P, Jayaraman G (2009) Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem 44:1088–1094

    Article  CAS  Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:1–12

    Article  Google Scholar 

  • Sinha R, Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles. doi:10.1007/s00792-014-0683-4

    PubMed  Google Scholar 

  • Sinsuwan S, Rodtong S, Yongsawatdigul J (2010) A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Food Chem 119:573–579

    Article  CAS  Google Scholar 

  • Sorokin DY, Tindall BJ (2006) The status of the genus name Halovibrio fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Int J Syst Evol Microbiol 56:487–489

    Article  CAS  PubMed  Google Scholar 

  • Tan TC, Mijts BN, Swaminathan K, Patel BKC, Divine C (2008) Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol 378:852–870

    Article  PubMed  Google Scholar 

  • Upasani V, Desai S (1990) Sambhar Salt Lake: chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Arch Microbiol 154:589–593

    Article  CAS  Google Scholar 

  • Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M (1990) Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Syst Appl Microbiol 13:29–33

    Article  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vidyasagar M, Prakash S, Mahajan V, Shouche YS, Sreeramulu K (2009) Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz J Microbiol 40:12–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Hsieh YR, Ng CC, Chan H, Lin HT, Tzeng WS, Shyu YT (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU05. Enzyme Microb Technol 44:373–379

    Article  CAS  Google Scholar 

  • Warren JC, Stowring L, Morales MF (1966) The effect of structure-disrupting ions on the activity of myosin and other enzymes. J Biol Chem 241:309–316

    CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Gunde- Cimerman NS (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, S., Saraf, M. (2015). Perspectives and Application of Halophilic Enzymes. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_15

Download citation

Publish with us

Policies and ethics