Skip to main content
Book cover

Halophiles pp 355–378Cite as

Hydrolytic Enzymes in Halophilic Bacteria, Properties and Biotechnological Potential

  • Chapter

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

Halophilic bacteria are one of the most important extremophilic microorganisms that can be found in saline or hypersaline environments which are widely distributed around the world. They are not only adapted to live in saline environments in where other organisms are not able to thrive and grow, but also subjected to other kinds of extreme conditions, like high pH values, high or low temperature, low oxygen availability, pressure, and toxic metals. Because of these abilities, biodiversity and biotechnological applications of halophiles have been studied since then these were introduced to microbiologists. Among different applications of halophilic bacteria, enzymes, especially hydrolases, always have received the most attraction in recent years. Enclosed is a summary review on biology of halophilic bacteria and their general applications with a closer look at the hydrolases produced by these microorganisms (haloenzymes).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Nat Biotechnol 13:662–668

    Article  CAS  Google Scholar 

  • Alavi S, Amoozegar MA, Khajeh K (2014) Enzyme (s) responsible for tellurite reducing activity in a moderately halophilic bacterium, Salinicoccus iranensis strain QW6. Extremophiles 18:953–961

    Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52:353–359

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Fatemi AZ, Karbalaei-Heidari HR, Razavi MR (2007) Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiol Res 162:369–377

    Article  CAS  Google Scholar 

  • Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA‐2. J Basic Microbiol 48:160–167

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230

    Article  CAS  Google Scholar 

  • Amoozegar MA, Khoshnoodi M, Didari M, Hamedi J, Ventosa A, Baldwin SA (2012) Tellurite removal by a tellurium-tolerant halophilic bacterial strain, Thermoactinomyces sp. QS-2006. Ann Microbiol 62:1031–1037

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aunpad R, Panbangred W (2003) Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. J Biosci Bioeng 96:529–536

    Article  CAS  PubMed  Google Scholar 

  • Babavalian H, Amoozegar MA, Zahraei S, Rohban R, Shakeri F, Moghaddam MM (2014) Comparison of bacterial biodiversity and enzyme production in three hypersaline lakes; Urmia, Howz-Soltan and Aran-Bidgol. Indian J Microbiol 54:444–449

    Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal G (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar T, Boutaiba S, Hacene H, Cayol JL, Fardeau ML, Ollivier B, Baratti JC (2005) Lipolytic activity from halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Brown A (1976) Microbial water stress. Bacteriol Rev 40:803

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen WQ, Liu YY (2013) Isolation and identification of Halomonas sp. ZSCW-10: a moderately halophilic bacteria strain with cellulase activity. Adv Mater Res 749:236–241

    Article  CAS  Google Scholar 

  • Cojoc R, Merciu S, Popescu G, Dumitru L, Kamekura M, Enache M (2009) Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Rom Biotechnol Lett 14:4658–4664

    Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α‐amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    CAS  PubMed  Google Scholar 

  • D’Costa B, Khanolkar D, Dubey SK (2013) Partial purification and characterization of metalloprotease of halotolerant alkaliphilic bacterium Bacillus cereus from coastal sediment of Goa, India. AJB 12:4905–4914

    Google Scholar 

  • DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–43

    Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312

    Article  CAS  PubMed  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  PubMed  Google Scholar 

  • Delgado‐García M, Valdivia‐Urdiales B, Aguilar‐González CN, Contreras‐Esquivel JC, Rodríguez‐Herrera R (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–258

    Article  PubMed  CAS  Google Scholar 

  • Dodia MS, Joshi RH, Patel RK, Singh SP (2006) Characterization and stability of extracellular alkaline proteases from halophilic and alkaliphilic bacteria isolated from saline habitat of coastal Gujarat, India. Braz J Microbiol 37:276–282

    Article  CAS  Google Scholar 

  • Dodia M, Rawal C, Bhimani H, Joshi R, Khare S, Singh S (2008) Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J Ind Microbiol Biotechnol 35:121–131

    Article  CAS  PubMed  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi-Zouaoui N (2012) Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Ann Microbiol 62:835–841

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • García MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728

    Article  PubMed  CAS  Google Scholar 

  • García MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound‐degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109

    Article  PubMed  CAS  Google Scholar 

  • Giridhar PV, Chandra T (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45:1730–1737

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Gonzalez C, Gutierrez C (1970) Presence of lipase among species of extremely halophilic bacteria. Can J Microbiol 16:1165–1166

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Roy I, Patel R, Singh S, Khare S, Gupta M (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatogr 1075:103–108

    Article  CAS  Google Scholar 

  • Han KI, Patnaik BB, Kim YH, Kwon HJ, Han YS, Han MD (2014) Isolation and characterization of chitinase‐producing Bacillus and Paenibacillus strains from salted and fermented shrimp, Acetes japonicus. J Food Sci 79:M665–M674

    Article  CAS  PubMed  Google Scholar 

  • Hao R, Lu A (2009) Biodegradation of heavy oils by halophilic bacterium. Prog Nat Sci 19:997–1001

    Article  CAS  Google Scholar 

  • Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19:1099–1102

    Article  CAS  Google Scholar 

  • Hou J, Han J, Cai L, Zhou J, Lü Y, Jin C, Liu J, Xiang H (2013) Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl Microbiol Biotechnol 98:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46:1257–1263

    Article  CAS  Google Scholar 

  • Jayachandra S, Kumar A, Merley D, Sulochana M (2012) Isolation and characterization of extreme halophilic bacterium Salinicoccus sp. JAS4 producing extracellular hydrolytic enzymes. RRST 4:46–49

    CAS  Google Scholar 

  • Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Onishi H (1974) Halophilic nuclease from a moderately halophilic Micrococcus varians. J Bacteriol 119:339–344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanlayakrit W, Ikeda T, Tojai S, Rodprapakorn M, Sirisansaneeyakul S (2001) Isolation and characterization of extracellular halophilic ribonuclease from halotolerant Pseudomonas species. Kasetsart J 35:179–187

    CAS  Google Scholar 

  • Karan R, Singh S, Kapoor S, Khare S (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28:136–145

    Article  CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012a) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:15

    Article  CAS  Google Scholar 

  • Karan R, Kumar S, Sinha R, Khare S (2012b) Halophilic microorganisms as sources of novel enzymes. In: Satyanarayana T, Johri BN (ed) Microorganisms in sustainable agriculture and biotechnology. Springer, New York, pp 555–579

    Google Scholar 

  • Karbalaei-Heidari HR, Ziaee AA, Amoozegar MA (2007) Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11:237–243

    Article  CAS  PubMed  Google Scholar 

  • Karbalaei-Heidari HR, Ziaee AA, Amoozegar MA, Cheburkin Y, Budisa N (2008) Molecular cloning and sequence analysis of a novel zinc-metalloprotease gene from the Salinivibrio sp. strain AF-2004 and its extracellular expression in E. coli. Gene 408:196–203

    Article  CAS  PubMed  Google Scholar 

  • Karbalaei-Heidari HR, Amoozegar MA, Hajighasemi M, Ziaee AA, Ventosa A (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J Ind Microbiol Biotechnol 36:21–27

    Article  CAS  PubMed  Google Scholar 

  • Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. Enzym Microb Technol 42:404–413

    Article  CAS  Google Scholar 

  • Khandeparker R, Verma P, Deobagkar D (2011) A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. New Biotechnol 28:814–821

    Article  CAS  Google Scholar 

  • Kiran KK, Chandra T (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl Microbiol Biotechnol 77:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Arunasri R, Jayachandra Y, Sulochana M (2010) Screening of extracellular hydrolytic enzymes from Marinobacter hydrocarbonoclasticus strain AK5. Bioscan 5:97–99

    CAS  Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh S, Khare S (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Inc, Boca Raton, pp 109–140

    Google Scholar 

  • Lama L, Romano I, Calandrelli V, Nicolaus B, Gambacorta A (2005) Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res Microbiol 156:478–484

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2012a) Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. J Ind Microbiol Biotechnol 39:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2012b) Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol 57:447–453

    Article  CAS  Google Scholar 

  • Li X, Wang HL, Li T, Yu HY (2012a) Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnol Lett 34:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY, Lin YF (2012b) Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY 5. Afr J Biotechnol 11:6327–6334

    CAS  Google Scholar 

  • Li X, Qian P, Wu SG, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18:171–178

    Article  PubMed  CAS  Google Scholar 

  • Liaw HJ, Mah RA (1992) Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl Environ Microbiol 58:260–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Litchfield C, Gillevet P (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55

    Article  CAS  PubMed  Google Scholar 

  • Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J Mol Biol 246:545–559

    Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Marhuenda-Egea FC, Bonete MJ (2002) Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 13:385–389

    Article  CAS  PubMed  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martín S, Márquez M, Sánchez-Porro C, Mellado E, Arahal D, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Menon G, Mody K, Keshri J, Jha B (2010) Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioprocess Eng 15:998–1005

    Article  CAS  Google Scholar 

  • Mourey A, Kilbertus G (1976) Simple media containing stabilized tributyrin for demonstrating lipolytic bacteria in foods and soils. J Appl Microbiol 40:47–51

    CAS  Google Scholar 

  • Muńoz J, Pérez-Esteban B, Esteban M, De La Escalera S, Gomez M, Martínez-Toledo M, Gonzalez-Lopez J (2001) Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source. Folia Microbiol 46:297–302

    Article  Google Scholar 

  • Najafi MF, Deobagkar D, Deobagkar D (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechnol 8:79–85

    Article  Google Scholar 

  • Neagu S, Enache M, Cojoc R (2014) Extracellular hydrolytic activities of halophilic microorganisms isolated from Balta Albă salt lake. Rom Biotech Lett 19:8951–8958

    Google Scholar 

  • Norberg P, Hofsten B (1969) Proteolytic enzymes from extremely halophilic bacteria. J Gen Microbiol 55:251–256

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Nakagawa S, Shinya K, Muto T, Fujimura N, Yasuda M, Ishikawa H (2000) Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 89:451–457

    Article  CAS  PubMed  Google Scholar 

  • Oie CS, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38:616–620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Onishi H, Mori T, Takeuchi S, Tani K, Kobayashi T, Kamekura M (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microbiol 45:24–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002b) Biotechnological applications and potentials of halophilic microorganisms. In: Oren A (ed) Halophilic microorganisms and their environments, cellular origin, life in extreme habitats and astrobiology, vol 5. Springer, New York, pp 357–388

    Chapter  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:13

    Article  CAS  Google Scholar 

  • Pandey S, Singh S (2012) Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl Biochem Biotechnol 166:1747–1757

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 40:3569–3575

    Google Scholar 

  • Patel R, Dodia M, Joshi R, Singh S (2006) Production of extracellular halo-alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. isolated from seawater in Western India. World J Microbiol Biotechnol 22:375–382

    Article  CAS  Google Scholar 

  • Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  PubMed  Google Scholar 

  • Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:e23325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prakash B, Vidyasagar M, Madhukumar M, Muralikrishna G, Sreeramulu K (2009a) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44:210–215

    Article  CAS  Google Scholar 

  • Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009b) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25:197–204

    Article  CAS  Google Scholar 

  • Purohit MK, Singh SP (2014) Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12. Process Biochem 49:61–68

    Article  CAS  Google Scholar 

  • Quillaguaman J, Hashim S, Bento F, Mattiasson B, Hatti‐Kaul R (2005) Poly (β‐hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157

    Article  CAS  PubMed  Google Scholar 

  • Ramezani M, Amoozegar MA, Ventosa A (2014) Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Ann Microbiol. doi:10.1007/s13213-014-0887-y (in press)

  • Rao JM, Argos P (1981) Structural stability of halophilic proteins. Biochemistry 20:6536–6543

    Article  CAS  PubMed  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rathi DN, Amir H, Abed R, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114:384–395

    Article  CAS  PubMed  Google Scholar 

  • Ratnakar D (2013) Use of halophile physiology and adaptations in various industrial applications. Res J Biotechnol 8:2

    Article  CAS  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  CAS  PubMed  Google Scholar 

  • Salgaonkar B, Mani K, Braganca J (2013) Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol 114:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Samad MYA, Razak C, Salleh AB, Zin Wan Yunus W, Ampon K, Basri M (1989) A plate assay for primary screening of lipase activity. J Microbiol Methods 9:51–56

    Article  CAS  Google Scholar 

  • Sánchez‐Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003a) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7:221–228

    PubMed  Google Scholar 

  • Sánchez‐Porro C, Martin S, Mellado E, Ventosa A (2003b) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    Article  PubMed  Google Scholar 

  • Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, Santos AL (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44:1299–1304

    Article  PubMed Central  PubMed  Google Scholar 

  • Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  CAS  PubMed  Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolaseproducing halophilic/halotolerant eubacteria. AJB 9:1555–1560

    CAS  Google Scholar 

  • Shafiei M, Ziaee AA, Amoozegar MA (2011) Purification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol 38:275–281

    Article  CAS  PubMed  Google Scholar 

  • Shafiei M, Ziaee AA, Amoozegar MA (2012) Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. Extremophiles 16:627–635

    Google Scholar 

  • ShaoMin Y, Guang W (2013) Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. doi:10.1186/1754-6834-6-177

    Google Scholar 

  • Sierra G (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 23:15–22

    Article  CAS  PubMed  Google Scholar 

  • Sorokin D, Kolganova T (2013) Bacterial chitin utilization at halophilic conditions. Extremophiles 18:243–248

    Article  PubMed  CAS  Google Scholar 

  • Souza PM (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41:850–861

    PubMed Central  PubMed  Google Scholar 

  • Steinbüchel A, Schlegel H (1991) Physiology and molecular genetics of poly (β‐hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Article  PubMed  Google Scholar 

  • Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Article  CAS  Google Scholar 

  • Teo JW, Zhang LH, Poh CL (2003) Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6. Gene 312:181–188

    Article  CAS  PubMed  Google Scholar 

  • Van Qua D, Simidu U, Taga N (1981) Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can J Microbiol 27:505–510

    Article  Google Scholar 

  • Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253

    Chapter  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Vidyasagar M, Prakash S, Jayalakshmi S, Sreeramulu K (2007) Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World J Microbiol Biotechnol 23:655–662

    Article  CAS  Google Scholar 

  • Vijayaraghavan P, Jebamalar TRJ, Vincent SGP (2012) Biosynthesis optimization and purification of a solvent stable alkaline serine protease from Halobacterium sp. Ann Microbiol 62:403–410

    Article  CAS  Google Scholar 

  • Wang CY, Hsieh YR, Ng CC, Chan H, Lin HT, Tzeng WS, Shyu YT (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzym Microb Technol 44:373–379

    Article  CAS  Google Scholar 

  • Wang CY, Chan H, Lin HT, Shyu YT (2010) Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU‐06. Ann Appl Biol 156:187–197

    Article  CAS  Google Scholar 

  • Wei X, Jiang X, Ye L, Yuan S, Chen Z, Wu M, Yu H (2013) Cloning, expression and characterization of a new enantioselective esterase from a marine bacterium Pelagibacterium halotolerans B2T. J Mol Catal B Enzym 97:270–277

    Article  CAS  Google Scholar 

  • Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7:423–431

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li S, Xue Y, Mao L, Ma Y (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16:35–43

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Guo LZ, Lu WD (2012) Extracellular production of novel halotolerant, thermostable, and alkali-stable carboxymethyl cellulase by marine bacterium Marinimicrobium sp. LS-A18. Appl Biochem Biotechnol 168:550–567

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Lau MW, Balan V, Dale BE, Yuan Y-J (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Amoozegar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amoozegar, M.A., Siroosi, M. (2015). Hydrolytic Enzymes in Halophilic Bacteria, Properties and Biotechnological Potential. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_13

Download citation

Publish with us

Policies and ethics