Skip to main content
Book cover

Halophiles pp 323–354Cite as

Microbial Hydrocarbon-Removal Under Halostress

  • Chapter

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

Oceans which occupy about 70 % of the earth’s surface represent a moderately saline environment. In addition, there are all over the world hypersaline areas, and the industry continuously produces huge amounts of liquid saline wastes. Similar to the nonsaline environments, saline ones harbor halophilic/halotolerant microorganisms with versatile physiological activities. Many of them are phototrophs or chemolithotrophs, and consequently serve as primary producers in these environments. Other microorganisms have the potential for biodegradation of xenobiotic compounds. The saline environments are also subjected to hydrocarbon pollution through legal and illegal human activity. Such environments too harbor halophilic/halotolerant, hydrocarbonoclastic microorganism which rid those environments of hydrocarbon pollutants. These microorganism are either planktonic, or more frequently associated with other microbes to form biofilms on animate and inanimates substrates. Seawaters accommodate numerous hydrocarbonoclastic bacteria belonging predominantly to the Gammaproteobacteria subgroup. Most prominent are the members of the group of the “obligate hydrocarbonoclastic bacteria” (OHCB) belonging to the genera Alcanivorax, Marinobacter, Thalassolithus, Cycloclasticus and Oleispira. Hypersaline areas harbor in addition, hydrocarbonoclastic haloarchaea. Artificially established biofilms comprising halophilic, hydrocarbonclastic microorganisms revealed active in hydrocarbon removal. It may be expected that the future will witness using such man-made biofilms in bioremediation of saline wastes polluted with hydrocarbons in bioreactors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed RMM, Al-Thukair A, de Beer D (2006) Bacterial diversity of a cyanobacterial mat-degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie M, Balks M, Foght J, Waterhouse E (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Al-Awadhi H, Al-Hasan RH, Sorkhoh NA, Salamah S, Radwan SS (2003) Establishing oil-degrading biofilms on gravel particles and glass plates. Int Biodeterior Biodegrad 51:181–185

    Article  CAS  Google Scholar 

  • Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186

    Article  CAS  PubMed  Google Scholar 

  • Al-Awadhi H, El-Nemr I, Mahmoud H, Sorkhoh NA, Radwan SS (2009) Plant-associated bacteria as tools for the phytoremediation of oily nitrogen-poor soils. Int J Phytoremed 11:11–27

    Article  Google Scholar 

  • Al-Awadhi H, Al-Mailem D, Dashti N, Hakam L, Eliyas M, Radwan SS (2012a) The abundant occurrence of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. Int Biodeterior Biodegrad 73:73–79

    Article  CAS  Google Scholar 

  • Al-Awadhi H, Dashti N, Kansour M, Sorkhoh NA, Radwan SS (2012b) Hydrocarbon-utilizing bacteria associated with biofouling materials from offshore waters of the Arabian Gulf. Int Biodeterior Biodegrad 69:10–16

    Article  CAS  Google Scholar 

  • Al-Bader D, Kansour M, Rayan R, Radwan SS (2013) Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants. Environ Sci Pollut Res 20:3252–3262

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan SS (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93:113–120

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Samir SS (2010a) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Marafie M, Al-Awadhi H, Eliyas M, Radwan SS (2010b) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101:5786–5792

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Al-Awadhi H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem D, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment. Can J Microbiol 59:837–844

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2014a) Enhanced bioremediation of oily hypersaline coastal areas in Kuwait via vitamin-fertilization. Environ Sci Pollut Res 21:3386–3394

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Khanafer M, Radwan SS (2014b) Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 67:857–865

    Article  PubMed  Google Scholar 

  • Al-Mailem DM, Kansour MK, Radwan SS (2014c) Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes. Can J Microbiol 60:477–486

    Article  CAS  PubMed  Google Scholar 

  • Anderson C, LaBelle R (2000) Update of comparative occurrence rates for offshore oil spills. Spill Sci Technol Bull 6:303–321

    Article  Google Scholar 

  • Andrews JS, Mason VP, Thompson IP, Stephens GM, Markx GH (2006) Construction of artificially structured microbial consortia (ASMC) using dielectrophoresis: examining bacterial interactions via metabolic intermediates within environmental biofilms. J Microbiol Meth 64:96–106

    Article  CAS  Google Scholar 

  • April W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbons treatment in soil. Chemosphere 20:253–265

    Article  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation – bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad 35:317–327

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications, 4th edn. Benjamin/Cummings Publishing Company Inc., Don Mills

    Google Scholar 

  • Atlas RM, Pramer D (1990) Focus on bioremediation. ASM News 56:352–353

    Google Scholar 

  • Balks RM, Paetzold RF, Kimble JM, Aislabie J, Campbell IB (2002) Effects of hydrocarbon spills on the temperature and moisture regimes of cryosols in the Ross Sea region. Antar Sci 14:319

    Article  Google Scholar 

  • Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12:155–172

    Article  CAS  PubMed  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Bonfá MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Bonney M, Jaber M (2011) Environmentally responsible inventory models: non-classical models for a non-classical era. Int J Prod Econ 133:43–53

    Article  Google Scholar 

  • Bossert I, Bartha R (1984) The fat of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan Publishing Co., New York, pp 434–476

    Google Scholar 

  • Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilization microorganisms. In: Wiseman A (ed) Topics in fermentation and enzyme technology, vol 9. Ellis Horwood, Chichester, pp 11–77

    Google Scholar 

  • Boyle J, Shann J (1995) Biodegradation of phenol 2,4-DCP and 2,4,5-T in field-collected rhizosphere and non-rhizosphere soils. J Environ Qual 24:782–785

    Article  CAS  Google Scholar 

  • Braddock J, Ruth M, Catterall P, Walworth J, McCarthy K (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient amended bioremediation. Environ Sci Technol 31:2078–2084

    Article  CAS  Google Scholar 

  • Brown DW, Romas LS, Friedman AJ, Maclod WD (1979) Analysis of trace levels of petroleum hydrocarbons in marine sediments using a solvent-slurry extraction procedure. In: Trace organic analysis: a new frontier in analytical chemistry, proceedings 9th materials symposium, National Bureau of Standards, Washington, DC, pp 161–167

    Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burger AE (1993) Estimating the mortality of seabirds following oil spills: effects of spill volume. Mar Pollut Bull 26:140–143

    Article  CAS  Google Scholar 

  • Chandran P, Das N (2011) Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravel. Biodegradation 22:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Choi SC, Kwon KK, Sohn JH, Kim SJ (2002) Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms. J Microbiol Biotechnol 12:431–436

    Google Scholar 

  • Colwell RR, Walker R (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Cooney JJ (1984) The fate of petroleum pollutants in freshwater ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan Publishing Co., New York, pp 399–434

    Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1987) How bacteria stick. Sci Am 238:86–95

    Article  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin

    Book  Google Scholar 

  • Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dashti N, Khanafer M, Ali N, El-Nemr I, Sorkhoh NA, Radwan SS (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLS. Wiley Ltd: Chichester. doi: 10.1002/9780470015902.a0000394

  • Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 65:789–798

    Article  CAS  Google Scholar 

  • Davis SJ, Gibbs CF (1975) The effect of weathering on crude oil residue exposed at sea. Water Resour 9:275–285

    CAS  Google Scholar 

  • De Lorenzo AD, Varcamonti M, Parascandola P, Vignola R, Bernardi A, Sacceddu P, Sisto R, Alteriis ED (2005) Characterization and performance of a toluene-degrading biofilm developed on pumice stones. Microbiol Cell Fact 4:4

    Article  CAS  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657

    Article  CAS  PubMed  Google Scholar 

  • Diaz MP, Grigson SJW, Peppiatt C, Burgess JG (2000) Isolation and characterization of novel hydrocarbon degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532

    Article  CAS  Google Scholar 

  • Dixon B (1996) Bioremediation is here to stay. ASM News 62:527–528

    Google Scholar 

  • Domde P, Kapley A, Purohit HJ (2007) Impact of bioaugmentation with a consortium of bacteria on the remediation of wastewater-containing hydrocarbons. Environ Sci Pollut Res 14:7–11

    Article  CAS  Google Scholar 

  • Dominguez-Rosado E, Pichtel J (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ Eng Sci 21:169–180

    Article  CAS  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  CAS  Google Scholar 

  • Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452

    Article  CAS  Google Scholar 

  • Erb RW, Eichner CA, Wagner-Döbler I, Timmis KN (1997) Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotechnol 15:378–382

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Martinez J, Pujalte MJ, Garcia-Martinez J, Mata M, Garay E, Rodriguez-Valera F (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338

    Article  CAS  PubMed  Google Scholar 

  • Forsyth MP, Shindler DB, Gochnauer MB, Kushner DJ (1971) Salt tolerance of intertidal marine bacteria. Can J Microbiol 17:825–828

    Article  CAS  PubMed  Google Scholar 

  • Fourcans A, Garc´ıa de Oteyza T, Wieland A, Solé A, Diestra E, Van Bleijswijk J, Grimalt JO, Kühl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  CAS  PubMed  Google Scholar 

  • Fox G (2001) Wildlife as sentinels of human health effects in the great lakes-st. Lawrence Basin. Environ Heal Perspect 109:853–861

    Google Scholar 

  • Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L (2012) Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie Van Leeuwenhock 130:485–491

    Google Scholar 

  • Garcia MR, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Geiselbrecht AD, Herwig RP, Deming JW, Staley JT (1996) Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Pudget sound sediments. Appl Environ Microbiol 62:3344–3349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gertier C, Gerdts G, Timmins KN, Yakimov MM, Golyshin PN (2009) Populations of heavy fuel oil-degrading marine microbial community in presence of sorbent materials. J Appl Microbiol 107:590–605

    Article  CAS  Google Scholar 

  • Golby S, Ceri H, Gieg LM, Chatterjee I, Margues LL, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79:240–250

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JF, Mallory LM, Alexander M (1985) Reason for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:917–983

    Google Scholar 

  • Golyshin PN, Martins Dos Santos VA, Kaiser O, Ferrer M, Sabirova YS, Lunsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Puhler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220

    Article  CAS  PubMed  Google Scholar 

  • Golyshin PN, Harayama S, Timmis KN, Yakimov MM (2005) Family Alcanivoraceae. In: Garrity G (ed) Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, pp 295–298

    Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halophiles. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 93–132

    Google Scholar 

  • Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527

    Article  CAS  PubMed  Google Scholar 

  • Gu SH, Kralovec AC, Christensen ER, Van Camp RP (2007) Source apportionment of PAHs in dated sediments from the Black River, Ohio. Water Resour 37:2149–2161

    Google Scholar 

  • Guthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  Google Scholar 

  • Hao R, Lu A (2009) Biodegradation of heavy oils by halophilic bacterium. Proc Natl Acad Sci U S A 19:997–1001

    CAS  Google Scholar 

  • Harvey HR, Fallon RD, Patton JS (1986) The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta 50:795–804

    Article  CAS  Google Scholar 

  • Head IM (1998) Bioremediation: a response to gross environmental abuse. Trends Biotechnol 11:599–608

    Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Staley JT (2001) Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett 201:47–51

    Google Scholar 

  • Heller JM, Wortman WJ, Weir JC (2000) Using modeled data and Geographic Informations System (GIS) technology for the investigation of Gulf war veterans’ environmental exposures and illnesses. In: 4th international conference on integrating GIS and Environmental Modeling (GIS/EM4): problems, prospects and research needs, Banff, Alberta, Canada, 2–8 September 2000

    Google Scholar 

  • Henner P, Schiavon M, Druelle V, Lichtfouse E (1999) Phytotoxicity of ancient gaswork soils: effect of polycyclic aromatic hydrocarbons (PAHs) on plant germentation. Organ Geochem 30:963–969

    Article  CAS  Google Scholar 

  • Hischmann K (2005) The Kuwait oil fires (Environmental disasters). In: Levine M (ed) Facts on File Inc, New York

    Google Scholar 

  • Horowitz A, Atlas RM (1977) Response of microorganisms to an accidental gasoline spillage in an arctic freshwater ecosystem. Appl Environ Microbiol 33:1252–1258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2003) Bioremediation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Steven C, pp 355–386

    Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  • Jimenez N, Vinas M, Guiu-Aragones C, Bayona JM, Albaiges J, Solanas AM (2011) Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 91:823–834

    Article  CAS  PubMed  Google Scholar 

  • Kerr RP, Copone DG (1988) The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in Estuarine sediments. Marine Environ Res 26:181–198

    Google Scholar 

  • Kerry E (1993) Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biol 13:163–170

    Article  Google Scholar 

  • Kleinsteuber S, Müller RH, Babel W (2001) Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5:375–384

    Article  CAS  PubMed  Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    Article  CAS  PubMed  Google Scholar 

  • Komives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interaction. Marcel Dekker, New York, pp 437–452

    Google Scholar 

  • Konlechner JN (1985) Investigation of the fate of paraffin based crude oil in an Antarctic terrestrial ecosystem. N Z Antarct Rec 6:40

    Google Scholar 

  • Krulwich TA, Guffanti AA (1989) Alkalophilic bacteria. Annu Rev Microbiol 43:435–463

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg JJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaeobacteria. Microbiology 60:596–601

    Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentration. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368

    Google Scholar 

  • Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 87–103

    Google Scholar 

  • Lattuati A, Metzger P, Acquaviva M, Bertrand JC, Largeau C (2002) n-Alkane degradation by Marinobacter hydrocarbonoclasticus strain SP 17: long chain β-hydroxy acids as indicators of bacterial activity. Org Geochem 33:37–45

    Article  CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbon in the environment. Microbiol Rev 54:305–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Caister Academic, Auckland

    Google Scholar 

  • Lee TK, Lee J, Sul WJ, Iwai S, Chai B, Tiedje JM, Park J (2011) Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl Environ Microbiol 77:3888–3891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Mahro B, Schaefer G, Kästner M (1994) Pathways of microbial degradation of polycyclic aromatic hydrocarbons in soil. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, pp 203–217

    Google Scholar 

  • Major JT (1990) Genesis and the origin of coal and oil. Apologetics Press, Montgomery

    Google Scholar 

  • Margesin R, Schinner F (1998) Oil biodegradation potential in alpine habitats. Arc Alpine Res 30:262–265

    Article  Google Scholar 

  • Margesin R, Schinner F (2001a) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001b) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Márquez MC, Ventosa A (2005) Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351

    Article  PubMed  CAS  Google Scholar 

  • McKinnon M, Vine P (1991) Tides of war: eco-disaster in the Gulf. Boxtree Limited, London

    Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209

    Article  CAS  Google Scholar 

  • Minai-Tehrani D, Minoui S, Herfatmanesh A (2009) Effect of salinity on bioremediation of Polycyclic Aromatic Hydrocarbon (PAHS) of heavy crude oil in soil. Bull Environ Cont Tax 82:179–184

    Article  CAS  Google Scholar 

  • Moxley K, Schmidt S (2012) Isolation of a phenol-utilizing marine bacterium from Durban Harbour (South Africa) and its preliminary characterization as Marinobacter sp. KM2. Water Sci Technol 65:932–939

    Article  CAS  PubMed  Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    Article  CAS  PubMed  Google Scholar 

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Sci Technol 95:165–178

    CAS  Google Scholar 

  • Nicholson CA, Fathepure BZ (2005) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    Article  CAS  Google Scholar 

  • Nilanjana D, Lakshmi V, Geetanjali B, Jaseetha AS, Evy AAM (2012) Application of biofilms on remediation of pollutants-an overview. J Microbiol Biotechnol Res 2:783–790

    Google Scholar 

  • Nwoko CO, Okeke PN, Agwu OO, Akpan IE (2007) Performance of Phaseolus vulgaris L. in a soil contaminated with spent-engine oil. Afr J Biotechnol 6:1922–1925

    CAS  Google Scholar 

  • Oie CSI, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Hents Y (1992) Microbial degradation of pollutants at high salt concentrations. Biogeosciences 3:387–398

    CAS  Google Scholar 

  • Perfumo A, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66:179–184

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Lessard RR, Clark JR (2003) Bioremediation of marine oil spills. Oil Gas Sci Technol 58:463–468

    Article  CAS  Google Scholar 

  • Quesada E, Ventosa A, Rodriguez-Valera F, Ramos-Cermenzana A (1982) Types and properties of some bacteria isolated from hypersaline soils. J Appl Microbiol 53:155–161

    Google Scholar 

  • Radwan SS (1991) Gulf oil spill. Nature 350:456

    Article  Google Scholar 

  • Radwan SS (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, vol 13, Soil biology. Springer, Berlin, pp 275–297

    Chapter  Google Scholar 

  • Radwan SS (2009) Phytoremediation for oily desert soils. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Berlin, pp 279–298

    Chapter  Google Scholar 

  • Radwan SS, Al-Hasan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. Aqua Microbiol Ecol 23:113–117

    Article  Google Scholar 

  • Radwan SS, Sorkhoh N (1993) Lipids of n-alkane-utilizing microorganisms and their application potential. Adv Appl Microbiol 39:29–90

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, Al-Hasan RH (1995) Self-cleaning and bioremediation potential of the Arabian Gulf. In: Cheremisinoff P (ed) Encyclopedia of environmental control technology, vol 9. Gulf Publishing, Hasbrouck Heights, pp 901–924

    Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr I, El-Desouky AF (1997) A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. J Appl Microbiol 83:353–358

    Article  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr I (1998) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation of the oily Kuwaiti desert. Microbiol Res 153:247–251

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awadhi H, El-Nemr IM (2000a) Cropping as a phytoremediation practice for oily soil with reference to crop safety as food. Int J Phytoremed 2:383–396

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Mailem D, El-Nemr I, Salamah S (2000b) Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons. Int Biodeterior Biodegrad 46:129–132

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegrad 50:55–59

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hasan RH, Mahmoud HM, Eliyas M (2007) Oil-utilizing bacteria associated with fish from the Arabian Gulf. J Appl Microbiol 103:2160–2167

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261

    Article  CAS  PubMed  Google Scholar 

  • Ramadan MA, Tayeb OM, Alexander M (1990) Inoculation size as a factor limiting success of inoculation for bioremediation. Appl Environ Microbiol 56:1392–1396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216

    CAS  Google Scholar 

  • Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331

    Article  CAS  PubMed  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Can J Microbiol 49:713–721

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E (1993) Exploiting microbial growth on hydrocarbons-new markets. Trend Biotechnol 11:419–424

    Article  Google Scholar 

  • Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, a handbook on the biology of bacteria, vol 2, 3rd edn. Springer, Berlin, pp 564–577

    Google Scholar 

  • Schlegel HG (1997) General microbiology, 7th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwab AP, Banks MK (1994) Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 132–141

    Chapter  Google Scholar 

  • Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456

    Article  CAS  PubMed  Google Scholar 

  • Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes-osmoregulation and potential applications. Curr Sci 100:1516–1521

    CAS  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:18–68

    Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications and bioremediation. Trends Microbiol 14:389–397

    Article  CAS  PubMed  Google Scholar 

  • Siron R, Pelletier E, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Cont Toxicol 28:406–416

    Article  CAS  Google Scholar 

  • Sorkhoh N, Al-Hassan R, Hopner T, Radwan S (1992) Self-cleaning of the Gulf. Nature 359:109

    Article  Google Scholar 

  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High temperature hydrocarbon degradation by Bacillus stearothermophilus from oil polluted Kuwaiti desert. Appl Microbiol Biotechnol 39:123–126

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Ali N, Al-Awadhi H, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010a) Phytoremediation for mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercury removal. Ecotoxicol Environ Saf 73:1998–2003

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh NA, Ali N, Salamah S, Eliyas M, Khanafer M, Radwan SS (2010b) Enrichment of rhizospheres of crop plants raised in oily sand with hydrocarbon-utilizing bacteria capable of hydrocarbon consumption in nitrogen free media. Int Biodeterior Biodegrad 64:659–664

    Article  CAS  Google Scholar 

  • Stapleton RD, Savage DC, Sayler GS (1998) Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64:4180–4184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stevenson JJ (1966) Lipids in soil. J Am Oil Chem Soc 43:203–210

    Article  CAS  Google Scholar 

  • Swaminathan MS, Kochlar SL (1989) Hydrocarbon yielding plants. In: Plants and society. Borin M and Sattin M (ed), Macmillan Publishers Limited, London, pp 577–589

    Google Scholar 

  • Tesar M, Reichenauer TG, Sessitsch A (2002) Bacterial rhizosphere communities of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34:1883–1892

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  • Vaysse PJ, Sivadon P, Goulas P, Grimaud R (2011) Cells dispersed from Marinobacter hydrocarbonocasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane–water interface. Environ Microbiol 13:737–746

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vevrek MC, Campbell WJ (2002) Identification of plant traits that enhance biodegradation of oil. In: 9th annual international petroleum environmental conference, Albuquerque, 22–25 October

    Google Scholar 

  • Vilhelmsson O, Hafsteinsson H, Kristjansson JK (1996) Isolation and characterization of moderately halophilic bacteria from fully cured salted cod (Bachdoo). J Appl Bacteriol 81:95–103

    Article  Google Scholar 

  • Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007a) Halomonas shengliensis sp., a moderately halophilic, denitrifying, crude-oil utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Cai H, Yu SL, Wang ZY, Liu J, WU XL (2007b) Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915

    Article  CAS  PubMed  Google Scholar 

  • White PM, Duane JR, Wolf C, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:1–4

    Article  CAS  Google Scholar 

  • Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332

    Article  CAS  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    Google Scholar 

  • Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Bioremed J 3:69–79

    Article  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Giuliano WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Bacteriol 54:141–148

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lai CT, Shieh WK (2000) Biodegradation of dispersed diesel fuel under high saline conditions. Water Res 34:3303–3314

    Article  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Han Z, Nai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are due to Mr. Mohamed Eliyas for the technical help he offered to us during the preparation of this chapter. Much literature information in this text has been collected within our Research projects RS 01/12, and YS 03/04. For this, we have to thank also our earlier co-workers Mrs. Rasha Sulaiman and Mrs. Maiss Marafie, as well as our current co-worker Mrs. Mayada Kansour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir S-A. Radwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radwan, S.SA., Al-Mailem, D.M. (2015). Microbial Hydrocarbon-Removal Under Halostress. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_12

Download citation

Publish with us

Policies and ethics