Liana Effects on Carbon Storage and Uptake in Mature and Secondary Tropical Forests

  • Sandra M. DuránEmail author
  • G. A. Sánchez-Azofeifa
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 5)


Lianas are a key structural component of tropical forests, where they represent approximately 25 % of woody plant species. Lianas reduce tree growth, inhibit tree regeneration and increase tree mortality. Thus, lianas are able to reduce carbon stored as tree biomass. Infestation rates on trees by lianas are stronger in shade-tolerant species with high wood density, which store more carbon than fast-growing species. Therefore, lianas may promote shifts in species composition and threaten tree carbon storage capacity of tropical forests. Lianas have shown consistent increases in density and biomass in tropical regions in the last decade, which may have profound consequences for forest dynamics. In this chapter, we review available evidence of liana effects on carbon cycling in mature and secondary tropical forests. Secondary forests now cover larger areas than mature forests, but their role in carbon cycling is unclear. Lianas are more prevalent in early stages of succession, and could have disproportionate effects on carbon uptake in secondary forests. Current knowledge indicates that lianas could reduce carbon stocks by up to 50 % and reduce carbon increment by 10 % in mature tropical forests. In secondary forests, evidence is quite limited; but one study found that lianas reduce 9–18 % of carbon accumulation in treefall gaps. Changes in composition by lianas are not yet supported by literature. We identify research needs required to improve predictions of how tropical carbon sinks will respond to liana increases.


Liana increases Global change Tropical forests Carbon cycling Secondary forests 


  1. Baker TR, Phillips OL, Malhi Y et al (2004) Increasing biomass in Amazonian forest plots. Philos Trans R Soc Lond B Biol Sci 359:353–365. doi: 10.1098/rstb.2003.1422 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bunker D, DeClerck F, Bradford J (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031PubMedCrossRefGoogle Scholar
  3. Burghouts TBA, Campbell EJF, Kolderman PJ (1994) Effects of tree species heterogeneity on leaf fall in primary and logged dipterocarp forest in the UluSegama Forest Reserve, Sabah, Malaysia. J Trop Ecol 10:1. doi: 10.1017/S0266467400007677 CrossRefGoogle Scholar
  4. Buschbacher R, Uhl C, Serrao E (1988) Abandoned pastures in eastern Amazonia II. Nutrient stocks in the soil and vegetation. J Ecol 76:682–699CrossRefGoogle Scholar
  5. Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi: 10.1007/s00442-005-0100-x PubMedCrossRefGoogle Scholar
  6. Chave J, Olivier J, Bongers F et al (2008) Above-ground biomass and productivity in a rain forest of eastern South America. J Trop Ecol 24:355–366. doi: 10.1017/S0266467408005075 CrossRefGoogle Scholar
  7. Chazdon RL, Letcher SG, van Breugel M et al (2007) Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans R Soc Lond B Biol Sci 362:273–289. doi: 10.1098/rstb.2006.1990 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen YJ, Bongers F, Cao KF, Cai ZQ (2008) Above-and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. J Trop Ecol 24:517–524. doi:
  9. Cifuentes-Jara M (2008) Aboveground biomass and ecosystem carbon pools in tropical secondary forests growing in six life zones of Costa Rica. Dissertation, Oregon State University, Corvallis, OR, USAGoogle Scholar
  10. Clark DB, Clark DA, Studies T et al (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331CrossRefGoogle Scholar
  11. Dalling JW, Schnitzer SA, Baldeck C et al (2012) Resource-based habitat associations in a Neotropical liana community. J Ecol 100:1174–1182. doi: 10.1111/j.1365-2745.2012.01989.x CrossRefGoogle Scholar
  12. DeWalt S, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19Google Scholar
  13. Dewalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16:1–19. doi: 10.1017/S0266467400001231 CrossRefGoogle Scholar
  14. Dupuy JM, Chazdon RL (2006) Effects of vegetation cover on seedling and sapling dynamics in secondary tropical wet forests in Costa Rica. J Trop Ecol 22:65. doi: 10.1017/S0266467405002890 CrossRefGoogle Scholar
  15. Durán SM, Gianoli E (2013) Carbon stocks in tropical forests decrease with liana density. Biol Lett 9(4):20130301. doi: 10.1098/rsbl.2013.0301 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Feldpausch TR, Riha SJ, Fernandes ECM, Wandelli EV (2005) Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact 9:1–22. doi: 10.1175/EI140.1 CrossRefGoogle Scholar
  17. Gehring C, Park S, Denich M (2004) Liana allometric biomass equations for Amazonian primary and secondary forest. For Ecol Manage 195:69–83. doi: 10.1016/j.foreco.2004.02.054 CrossRefGoogle Scholar
  18. Gilbert B, Wright SJ, Muller-Landau HC et al (2006) Life history trade-offs in tropical trees and lianas. Ecology 87:1281–1288. doi: 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2 PubMedCrossRefGoogle Scholar
  19. Graham EA, Mulkey SS, Kitajima K et al (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci U S A 100:572–576. doi: 10.1073/pnas.0133045100 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hegarty EE (1991) Leaf litter production by lianes and trees in a sub-tropical Australian rain forest. J Trop Ecol 7:201. doi: 10.1017/S0266467400005356 CrossRefGoogle Scholar
  21. Hladik A (1974) Phenology of leaf production in rain forest of Gabon: distribution and composition of food for folivores. C R Acad Sci 278:2527–2530Google Scholar
  22. da Hora RC, Primavesi O, Soares JJ (2008) Contribuição das folhas de lianas na produção de serapilheira em um fragmento de floresta estacional semidecidual em São Carlos, SP. Rev Bras Botânica 31:277–285. doi: 10.1590/S0100-84042008000200010 CrossRefGoogle Scholar
  23. Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892. doi: 10.2307/176667 Google Scholar
  24. Ingwell LL, Joseph Wright S, Becklund KK et al (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887. doi: 10.1111/j.1365-2745.2010.01676.x CrossRefGoogle Scholar
  25. Kalácska M, Calvo-Alvarado JC, Sánchez-Azofeifa GA (2005) Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol 25:733–744. doi: 10.1093/treephys/25.6.733 PubMedCrossRefGoogle Scholar
  26. Körner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond B Biol Sci 359:493–498. doi: 10.1098/rstb.2003.1429 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Laurance WF (2010) Habitat destruction: death by a thousand cuts. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 73–87CrossRefGoogle Scholar
  28. Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278:1117–1118. doi: 10.1126/science.278.5340.1117 CrossRefGoogle Scholar
  29. Laurance W, Andrade A, Magrach A (2014) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:1604–1611PubMedCrossRefGoogle Scholar
  30. Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during tropical forest succession. For Ecol Manag 257:2150–2156. doi: 10.1016/j.foreco.2009.02.028 CrossRefGoogle Scholar
  31. Lewis SL, Lloyd J, Sitch S et al (2009) Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst 40:529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345 CrossRefGoogle Scholar
  32. Madeira BG, Espírito-Santo MM, Neto SD et al (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201:291–304. doi: 10.1007/s11258-009-9580-9 CrossRefGoogle Scholar
  33. Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75. doi: 10.1111/j.1365-2745.2011.01916.x CrossRefGoogle Scholar
  34. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi: 10.1126/science.1201609 PubMedCrossRefGoogle Scholar
  35. Paul GS, Yavitt JB (2011) Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. Bot Rev 77:11–30. doi: 10.1007/s12229-010-9059-3 CrossRefGoogle Scholar
  36. Pérez-Salicrup DR, Barker MG (2000) Effect of liana cutting on water potential and growth of adult Sennamultijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia 124:469–475. doi: 10.1007/PL00008872 CrossRefGoogle Scholar
  37. Phillips O, Martínez R, Arroyo L, Baker T (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774PubMedCrossRefGoogle Scholar
  38. Phillips OL, Baker TR, Arroyo L et al (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philos Trans R Soc Lond B Biol Sci 359:381–407. doi: 10.1098/rstb.2003.1438 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Phillips OL, Vásquez Martínez R, Monteagudo Mendoza A et al (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258. doi: 10.1890/04-1446 CrossRefGoogle Scholar
  40. Pragasan LA, Parthasarathy N (2005) Litter production in tropical dry evergreen forests of south India in relation to season, plant life-forms and physiognomic groups. Curr Sci 88:1255–1263Google Scholar
  41. Putz FE (1984) The natural history of Lianas on Barro Colorado Island, Panama. Ecology 65:1713. doi: 10.2307/1937767 CrossRefGoogle Scholar
  42. Read L, Lawrence D (2003) Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatan. Ecol Appl 13:85–97CrossRefGoogle Scholar
  43. Restom TG, Nepstad DC (2001) Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant and Soil 236:153–163CrossRefGoogle Scholar
  44. Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276. doi: 10.1086/431250 PubMedCrossRefGoogle Scholar
  45. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  46. Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406. doi: 10.1111/j.1461-0248.2011.01590.x PubMedCrossRefGoogle Scholar
  47. Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857. doi: 10.1111/j.1461-0248.2010.01480.x PubMedCrossRefGoogle Scholar
  48. Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666. doi: 10.1046/j.1365-2745.2000.00489.x CrossRefGoogle Scholar
  49. Schnitzer SA, van der Heijden GMF, Mascaro J, Carson WP (2014) Lianas in gaps reduce carbon accumulation in a tropical forest. Ecol 140515081851004. doi: 10.1890/13-1718.1
  50. Sierra CA, del Valle JI, Orrego SA et al (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manage 243:299–309. doi: 10.1016/j.foreco.2007.03.026 CrossRefGoogle Scholar
  51. Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, Jørgensen PM, Weiser MD, Monteagudo-Mendoza A, Núñez-Vargas P (2011) Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr 20:744–754. doi: 10.1111/j.1466-8238.2010.00645.x CrossRefGoogle Scholar
  52. Uhl C, Buschbacher R, Serrao E (1988) Abandoned pastures in eastern Amazonia. I. Patterns of plant succession. J Ecol 76:663–681CrossRefGoogle Scholar
  53. van der Heijden GMF, Phillips OL (2009) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 6:2217–2226. doi: 10.5194/bg-6-2217-2009 CrossRefGoogle Scholar
  54. van der Heijden GMF, Healey JR, Phillips OL (2008) Infestation of trees by lianas in a tropical forest in Amazonian Peru. J Veg Sci 19:747–756. doi: 10.3170/2008-8-18459 CrossRefGoogle Scholar
  55. van der Heijden GMF, Schnitzer SA, Powers JS, Phillips OL (2013) Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica 45:682–692. doi: 10.1111/btp.12060 CrossRefGoogle Scholar
  56. Wright SJ (2013) The carbon sink in intact tropical forests. Glob Chang Biol 19:337–339. doi: 10.1111/gcb.12052 PubMedCrossRefGoogle Scholar
  57. Wright SJ, Calderón O, Hernandéz A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from panama. Ecology 85:484–489. doi: 10.1890/02-0757 CrossRefGoogle Scholar
  58. Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005) Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J Trop Ecol 21:307–315. doi:

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations