Geographical, Taxonomical and Ecological Aspects of Lianas in Subtropical Forests of Argentina

  • Agustina MaliziaEmail author
  • Paula I. Campanello
  • Mariana Villagra
  • Sergio Ceballos
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 5)


Lianas are more diverse and typically more abundant in tropical than temperate forests, with subtropical forests being intermediate. In this chapter, we analyze geographical, taxonomical and ecological patterns of lianas in subtropical forests of Northern Argentina, including Mountain Forests (MF), Atlantic Forests (AF); and Dry and Humid Chaco Forests (DCh and HCh, respectively). A total of 184 woody species of climbing plants were recognized in all four subtropical forests, with 35 species exclusive to MF, 38 exclusive to AF, while DCh and HCh had 2 and 8 exclusive species, respectively. In MF most liana species belonged to Sapindaceae and Bignoniaceae (16 % each), followed by Malpighiaceae (11 %) and Apocynaceae (10 %). In AF most liana species belonged to Bignoniaceae (21 %) followed by Apocynaceae (12 %), Fabaceae (11 %), Malpighiaceae (11 %) and Sapindaceae (10 %). Considering all liana species together, the most common climbing mechanisms included tendrils and twiners. The highest liana density was observed in the semideciduous Atlantic Forest, followed by the deciduous Humid Chaco Forest and the semideciduous Montane Forest. The semideciduous Atlantic Forest has also relatively high liana species richness as compared to other subtropical forests, followed by semideciduous MF. Besides geographical location and forest disturbances, little is known about how lianas respond to other environmental factors that drive patterns of liana density and diversity in these subtropical forests.


Atlantic Forest Chaco Disturbance Subtropical Forest Woody climbers Yungas 



Karina Buzza from SIGA PROYUNGAS made the figure of the study area.


  1. Alves LF, Assis MA, van Melis J, Barros ALS, Vieira SA, Martins FR, Martinelli LA, Joly CA (2012) Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecol Res 27:323–332CrossRefGoogle Scholar
  2. Ayarde HR (2005) Vegetación lianescente de las áreas montanas del noroeste de Argentina. Lilloa 42:95–128Google Scholar
  3. Ayarde HR, Boero C, Moris M, Slanis A, González JA (1999) Flora y Vegetación de Tariquía. In: González JA, Scrocchi GJ, Lavilla EO (eds) Relevamiento de la biodiversidad de la Reserva Nacional de Flora y Fauna Tariquía (Tarija, Bolivia). Fundación Miguel Lillo, Tucumán, pp 29–62Google Scholar
  4. Bobbink R, Hicks WK, Galloway JN, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gillian F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59PubMedCrossRefGoogle Scholar
  5. Boom BM, Mori SA (1982) Falsification of two hypotheses on liana exclusion from tropical trees possessing buttresses and smooth bark. Bull Torrey Bot Club 109:447–450CrossRefGoogle Scholar
  6. Bridgewater S, Ratter JA, Ribeiro JF (2004) Biogeographic patterns, β-diversity and dominance in the cerrado biome of Brazil. Biodiv Conserv 13:2295–2318CrossRefGoogle Scholar
  7. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. INBIO, Santo Domingo de Heredia, pp 623–658Google Scholar
  8. Burkart R, Bárbaro NO, Sánchez RO, Gómez DA (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales, Buenos AiresGoogle Scholar
  9. Burnham RJ (2002) Dominance, diversity and distribution of lianas in Yasuní, Ecuador: who is on top? J Trop Ecol 18:845–864CrossRefGoogle Scholar
  10. Caballé G, Martin A (2001) Thirteen years of change in trees and lianas in a Gabonese rain forest. Plant Ecol 152:167–173CrossRefGoogle Scholar
  11. Cabrera AL (1971) Fitogeografía de la República Argentina. Bol Soc Argent Bot 14:1–42Google Scholar
  12. Campanello PI, Garibaldi JF, Gatti MG, Goldstein G (2007a) Lianas in a subtropical Atlantic Forest: host preference and tree growth. For Ecol Manage 242:250–259CrossRefGoogle Scholar
  13. Campanello PI, Gatti MG, Ares A, Montti L, Goldstein G (2007b) Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic forest. For Ecol Manage 252:108–117CrossRefGoogle Scholar
  14. Campanello PI, Montti L, Mac Donagh P, Goldstein G (2009) Reduced impact logging and post-harvesting forest management in the Atlantic Forest: Alternative approaches to enhance canopy tree growth and regeneration. In: Grossberg SP (ed) Forest management. Nova, New York, pp 39–59Google Scholar
  15. Campanello PI, Villagra M, Garibaldi JF, Ritter LJ, Araujo JJ, Goldstein G (2012) Liana abundance, tree crown infestation, and tree regeneration ten years after liana cutting in a subtropical forest. For Ecol Manage 284:213–221CrossRefGoogle Scholar
  16. Clark DA (2007) Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39:4–19CrossRefGoogle Scholar
  17. Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemi-epiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331CrossRefGoogle Scholar
  18. DeWalt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19Google Scholar
  19. DeWalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16:1–19CrossRefGoogle Scholar
  20. DeWalt SJ, Schnitzer SA, Alves LF, Bongers F, Burnham RJ, Cai Z, Carson WP, Chave J, Chuyong GB, Costa FRC, Ewango CEN, Gallagher RV, Gerwing JJ, Gortaire Amezcua E, Hart T, Ibarra-Manríquez G, Ickes K, Kenfack D, Letcher S, Macía MC, Makana JR, Malizia A, Martínez-Ramos M, Mascaro J, Muthumperumal C, Muthuramkumar S, Nogueira A, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos H, Sridhar Reddy M, Nsanyi Sainge M, Thomas D, van Melis J (2014) Biogeographical patterns in liana abundance and diversity. In: Schnitzer S, Burnham R, Putz J, Bongers F (eds) Ecology of lianas. Wiley-Blackwell, Oxford (in press)Google Scholar
  21. Durigon J, Waechter JL (2011) Floristic composition and biogeographic relations of a subtropical assemblage of climbing plants. Biodiv Conserv 20:1027–1044CrossRefGoogle Scholar
  22. Durigon J, Miotto STS, Gianoli E (2014) Distribution and traits of climbing plants in subtropical and temperate South America. J Veg Sci 25:1484–1492CrossRefGoogle Scholar
  23. Galindo-Leal C, Gusmão-Câmara I (2003) The Atlantic forest of South America: biodiversity status, threats and outlook. Island Press, Washington, DCGoogle Scholar
  24. Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of Vines. Cambridge University Press, Cambridge, pp 3–49Google Scholar
  25. Giménez AM, Moglia JG (2003) Árboles del Chaco Argentino: guía para el reconocimiento dendrocronológico. Editorial El Liberal, Santiago del EsteroGoogle Scholar
  26. Giusti L, Slanis A, Aceñolaza P (1995) Fitosociología de los bosques de aliso (Alnus acuminata HBK. ssp. acuminata) de Tucumán (Argentina). Lilloa 38:93–120Google Scholar
  27. Hättenschwiler S (2002) Liana seedling growth in response to fertilization in a Neotropical forest understorey. Basic Appl Ecol 3:135–143CrossRefGoogle Scholar
  28. Hora RC, Soares JJ (2002) Estrutura fitossociológica da comunidade de lianas em uma floresta estacional semidecidual na Fazenda Canchim, São Carlos, SP. Rev Bras Bot 25:323–329CrossRefGoogle Scholar
  29. Houston M (1995) Biological diversity: the coexistence of species in changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  30. Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:1299–1309PubMedCrossRefGoogle Scholar
  31. Killen TJ, Jardim A, Mamani F, Rojas N (1998) Diversity, composition and structure of tropical semidecidua forest in the Chiquitanía region of Santa Cruz, Bolivia. J Trop Ecol 14:803–827CrossRefGoogle Scholar
  32. Leite PF, Klein RM (1990) Vegetação. In: IBGE (ed) Geografia do Brasil: Região Sul. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, pp 113–150Google Scholar
  33. Lorea L (2006) Lianas en bosques del Chaco húmedo. Descripción de su participación en la estructura del bosque. Thesis. Universidad Nacional de Santiago del EsteroGoogle Scholar
  34. Lorea L, Brassiolo MM (2007) Establecimiento de lianas sobre los árboles de un bosque del Chaco Húmedo Argentino. Rev Forest Venez 51:47–55Google Scholar
  35. Lorea L, Brassiolo MM, Gomez C (2008) Abundancia y diversidad de lianas en un bosque del Chaco húmedo argentino. Quebracho 16:41–50Google Scholar
  36. Malizia A (2003) Host tree preference of vascular epiphytes and climbers in a subtropical montane cloud forest of Northwest Argentina. Selbyana 24:196–205Google Scholar
  37. Malizia A, Grau HR (2006) Liana – host tree associations in a subtropical montane forest of north-western Argentina. J Trop Ecol 22:331–339CrossRefGoogle Scholar
  38. Malizia A, Grau HR (2008) Landscape context and microenvironment influences on liana communities within treefall gaps. J Veg Sci 19:597–604CrossRefGoogle Scholar
  39. Malizia A, Ayarde H, Sasal Y (2009) Ecología y diversidad de lianas en la selva pedemontana de las yungas australes. In: Brown AD, Blendinger P, Lomáscolo T, García Bes P (eds) Ecología, historia natural y conservación de la Selva Pedemontana de las Yungas Australes. Ediciones del Subtrópico, Tucumán, pp 75–104Google Scholar
  40. Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance control liana communities in a subtropical montane forest. J Veg Sci 21:551–560CrossRefGoogle Scholar
  41. Mascaro J, Schnitzer SA, Carson WP (2004) Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. For Ecol Manage 190:3–14CrossRefGoogle Scholar
  42. Meyer T (1963) Estudios sobre la Selva Tucumana. La Selva de Mirtáceas de las Pavas. Opera Lilloana 10:1–144Google Scholar
  43. Molino JF, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547):1702–1704PubMedCrossRefGoogle Scholar
  44. Morello J (2012) Ecoregión Chaco Húmedo. In: Morello J, Matteucci SD, Rodriguez AF, Silva ME (eds) Ecoregiones y complejos ecosistémicos argentinos. Ediciones FADU, Buenos Aires, pp 205–233Google Scholar
  45. Morello J, Adámoli J (1974) Las grandes unidades de vegetación y ambiente del Chaco Argentino. Vegetación y Ambiente de la Provincia del Chaco. INTA, ArgentinaGoogle Scholar
  46. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  47. Oliva Carrasco L, Bucci SJ, Di Francescantonio D, Lezcano OA, Campanello PI, Scholz FG, Rodríguez S, Madanes N, Cristiano PM, Hao GY, Holbrook NM, Goldstein G (2015) Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate, and life history traits. Tree Physiol. doi: 10.1093/treephys/tpu087
  48. Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. Taylor & Francis/CRC Press, Oxford, pp 159–192Google Scholar
  49. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams.
  50. Pennington RT, Richardson JA, Lavin M (2006) Insights into the historical construction of species-rich biomes from dated plant phylogenies, phylogenetic community structure and neutral ecological theory. New Phytol 172:605–616PubMedCrossRefGoogle Scholar
  51. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457CrossRefGoogle Scholar
  52. Pérez Salicrup DR, Sork VL (2001) Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:34–47CrossRefGoogle Scholar
  53. Perez-Salicrup DR, de Meijere W (2005) Number of lianas per tree and number of trees climbed by lianas at Los Tuxtlas, Mexico. Biotropica 37:153–156CrossRefGoogle Scholar
  54. Phillips OL, Vásquez Martínez R, Arroyo L, Baker TR, Killeen TJ, Lewis SL, Malhi Y, Monteagudo Mendoza A, Neill D, Núñez Vargas P, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774PubMedCrossRefGoogle Scholar
  55. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476CrossRefGoogle Scholar
  56. Pitman NCA, Terborgh JW, Silman MR, Nuñez PV, Neil DA, Cerón CE, Palacios WA, Aulestia M (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:2101–2117CrossRefGoogle Scholar
  57. Prado DE (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot 57:437–461CrossRefGoogle Scholar
  58. Putz FE (1983) Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro basin, Venezuela. Biotropica 15:185–189CrossRefGoogle Scholar
  59. Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713–1724CrossRefGoogle Scholar
  60. Putz FE (1991) Silvicultural effects on lianas. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, New York, pp 493–501Google Scholar
  61. Reddy MS, Parthasarathy N (2006) Liana diversity and distribution on host tress in four inland tropical dry evergreen forests of peninsular India. Trop Ecol 47:103–116Google Scholar
  62. Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276PubMedCrossRefGoogle Scholar
  63. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  64. Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406PubMedCrossRefGoogle Scholar
  65. Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666CrossRefGoogle Scholar
  66. Schnitzer SA, Mangan SA, Dalling JW, Baldeck CA, Hubbell SP, Ledo A, Muller-Landau H, Tobin MF, Aguilar S, Brassfield D, Hernandez A, Lao S, Perez R, Valdes O, Rutishauser Yorke S (2012) Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 7:e52114. doi: 10.1371/journal.pone.0052114 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Talley SM, Setzer WN, Jackes BR (1996) Host associations of two adventitious root climbing vines in a north Queensland tropical rain forest. Biotropica 28:356–366CrossRefGoogle Scholar
  68. Vandermeer J, de la Cerda IG, Boucher D, Perfecto I, Ruiz J (2000) Hurricane disturbance and tropical tree species diversity. Science 290:788–791PubMedCrossRefGoogle Scholar
  69. Vogt CV (2011) Composición de la flora vascular del Chaco Boreal, Paraguay I. Pteridophyta y Monocotyledonae. Steviana 3:13–47Google Scholar
  70. Vogt CV (2012a) Composición de la flora vascular del Chaco Boreal, Paraguay II. Dycotiledonae: Achantaceae-Fabaceae. Steviana 4:65–116Google Scholar
  71. Vogt CV (2012b) Composición de la flora vascular del Chaco Boreal, Paraguay III. Dycotiledonae: Gesneriaceae-Zygophyllaceae. Steviana 5:5–40Google Scholar
  72. Whitmore TC (1990) An introduction to tropical rain forests. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Agustina Malizia
    • 1
    Email author
  • Paula I. Campanello
    • 2
  • Mariana Villagra
    • 2
  • Sergio Ceballos
    • 1
  1. 1.CONICET, Instituto de Ecología Regional, Facultad de Ciencias Naturales e IMLUniversidad Nacional de TucumánYerba BuenaArgentina
  2. 2.CONICET, Instituto de Biología Subtropical, Facultad de Ciencias ForestalesUniversidad Nacional de MisionesPuerto IguazúArgentina

Personalised recommendations