Skip to main content

Axisymmetric Thermo-Elastic-Plastic Problem Under Plane Stress Conditions

  • Chapter
  • First Online:
Elastic/Plastic Discs Under Plane Stress Conditions

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 617 Accesses

Abstract

Thin annular discs subject to various loading conditions are a class of commonly used structures in mechanical engineering. Particular examples are aircraft structures and reciprocating machinery. The mechanical analysis and design of such discs may be based either on elastic or elastic/plastic solutions. This monograph deals with the latter approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid L (1997) Incorporating hole cold expansion to meet durability and damage tolerance airworthiness objectives. SAE International, SAE Paper No 972624

    Google Scholar 

  2. Ghorashi M, Daneshpazhooh M (2001) Limit analysis of variable thickness circular plates. Comput Struct 70:461–468

    Article  Google Scholar 

  3. Durban D (1987) An exact solution for the internally pressurized, elastoplastic, strain-hardening, annular plate. Acta Mech 66:111–128

    Article  MATH  Google Scholar 

  4. Guven U (1998) Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion. Int J Mech Sci 40:97–109

    Article  Google Scholar 

  5. Guven U (1998) Stress distribution in a linear hardening annular disk of variable thickness subjected to external pressure. Int J Mech Sci 40:589–601

    Article  Google Scholar 

  6. Guven U, Altay O (2000) Elastic-plastic solid disk with nonuniform heat source subjected to external pressure. Int J Mech Sci 42:831–842

    Article  Google Scholar 

  7. Eraslan AN (2002) Inelastic deformations of rotating variable thickness solid disks by Tresca and von Mises criteria. Int J Comput Eng Sci 3:89–101

    Article  Google Scholar 

  8. Eraslan AN (2003) Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur J Mech A Solids 22:861–874

    Article  MATH  Google Scholar 

  9. Eraslan AN (2003) Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int J Mech Sci 45:643–667

    Google Scholar 

  10. Eraslan AN, Orcan Y (2002) On the rotating elastic-plastic solid disks of variable thickness having concave profiles. Int J Mech Sci 44:1445–1466

    Article  MATH  Google Scholar 

  11. Arslan E, Mack W, Eraslan AN (2008) Effect of a temperature cycle on a rotating elastic-plastic shaft. Acta Mech 195:129–140

    Article  MATH  Google Scholar 

  12. You LH, Zhang JJ (1999) Elastic-plastic stresses in a rotating solid disk. Int J Mech Sci 41:269–282

    Google Scholar 

  13. You LH, Tang YY, Zhang JJ, Zheng CY (2000) Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. Int J Solids Struct 37:7809–7820

    Article  MATH  Google Scholar 

  14. You XY, You LH, Zhang JJ (2004) A simple and efficient numerical method for determination of deformations and stresses in rotating solid shafts with non-linear strain-hardening. Commun Numer Methods Eng 20:689–697

    Article  MATH  Google Scholar 

  15. Eraslan AN, Argeso A (2002) Limit angular velocities of variable thickness rotating disks. Int J Solids Struct 39:3109–3130

    Article  MATH  Google Scholar 

  16. Debski R, Zyczkowski M (2002) On decohesive carrying capacity of variable-thickness annular perfectly plastic disks. Z Angew Math Mech 82:655–669

    Article  MATH  MathSciNet  Google Scholar 

  17. Vivio F, Vullo L (2010) Elastic-plastic analysis of rotating disks having non-linearly variable thickness: residual stresses by overspeeding and service stress state reduction. Ann Solid Struct Mech 1:87–102

    Article  Google Scholar 

  18. Budiansky B, Mangasarian DL (1960) Plastic stress concentration at a circular hole in an infinite sheet subjected to equal biaxial tension. Trans ASME J Appl Mech 27:59–64

    Article  MATH  MathSciNet  Google Scholar 

  19. Papanastasiou P, Durban D (1997) Elastoplastic analysis of cylindrical cavity problems in geomaterials. Int J Numer Anal Mech Geomech 21:133–149

    Article  MATH  Google Scholar 

  20. Durban D, Papanastasiou P (1997) Cylindrical cavity expansion and contraction in pressure sensitive geomaterials. Acta Mech 122:99–122

    Google Scholar 

  21. Bradford IDR, Durban D (1998) Stress and deformation fields around a cylindrical cavity embedded in a pressure-sensitive elastoplastic medium. Trans ASME J Appl Mech 65:374–379

    Google Scholar 

  22. Chen PCT (1973) A comparison of flow and deformation theories in a radially stressed annular plate. Trans ASME J Appl Mech 40:283–287

    Article  Google Scholar 

  23. Roberts SM, Hall FR, Bael AV, Hartley P, Pillinger I, Sturgess CEN, Houtte PV, Aernoudt E (1992) Benchmark tests for 3-D, elasto-plastic, finite-element codes for the modeling of metal forming processes. J Mater Process Technol 34:61–68

    Article  Google Scholar 

  24. Helsing J, Jonsson A (2002) On the accuracy of benchmark tables and graphical results in the applied mechanics literature. Trans ASME J Appl Mech 69:88–90

    Article  MATH  Google Scholar 

  25. Ball DL (1995) Elastic-plastic stress analysis of cold expanded fastener holes. Fat Fract Eng Mater Struct 18:47–63

    Article  Google Scholar 

  26. Hill R (1950) The mathematical theory of plasticity. Clarendon Press, Oxford

    MATH  Google Scholar 

  27. Bland DR (1956) Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients. J Mech Phys Solids 4:209–229

    Article  MATH  MathSciNet  Google Scholar 

  28. Rees DWA (1990) Autofrettage theory and fatigue life of open-ended cylinders. J Strain Anal Eng Des 25:109–121

    Article  Google Scholar 

  29. Luxmoore AR, Light MF, Evans WT (1977) A comparison of finite-element and experimental studies on plane stress crack geometries. J Strain Anal Eng Des 12:208–216

    Article  Google Scholar 

  30. Simo JC, Taylor RL (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Meth Eng 22:649–670

    Article  MATH  MathSciNet  Google Scholar 

  31. Jetteur P (1986) Implicit integration algorithm for elastoplasticity in plane stress analysis. Eng Comput 3:251–253

    Article  Google Scholar 

  32. Kleiber M, Kowalczyk P (1996) Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity. Comput Meth Appl Mech Eng 137:395–409

    Article  MATH  Google Scholar 

  33. Valoroso N, Rosati L (2009) Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. Part 1: Theoretical formulation. Int J Solids Struct 46:74–91

    Article  MATH  Google Scholar 

  34. Triantafyllou SP, Koumousis VK (2012) An hysteretic quadrilateral plane stress element. Arch Appl Mech 82:1675–1687

    Article  MATH  Google Scholar 

  35. Rees DWA (2006) Basic engineering plasticity. Elsevier, Amsterdam

    Google Scholar 

  36. Yoshida S, Oguchi A, Nobuki M (1971) Influence of high hydrostatic pressure on the flow stress of copper polycrystals. Trans Jpn Inst Met 12:238–242

    Article  Google Scholar 

  37. Spitzig WA, Sober RJ, Richmond O (1976) The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory. Metall Trans 7A:1703–1710

    Article  Google Scholar 

  38. Spitzig WA (1979) Effect of hydrostatic pressure on plastic-flow properties of iron single crystals. Acta Metall 27:523–534

    Article  Google Scholar 

  39. Kao AS, Kuhn HA, Spitzig WA, Richmond O (1990) Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides. Trans ASME J Eng Mater Technol 112(1):26–30

    Article  Google Scholar 

  40. Wilson CD (2002) A critical reexamination of classical metal plasticity. Trans ASME J Appl Mech 69:63–68

    Article  MATH  Google Scholar 

  41. Liu PS (2006) Mechanical behaviors of porous metals under biaxial tensile loads. Mater Sci Eng 422A:176–183

    Google Scholar 

  42. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis for limit design. Q Appl Math 10:157–165

    MATH  MathSciNet  Google Scholar 

  43. Alexandrov S, Alexandrova N (2001) Thermal effects on the development of plastic zones in thin axisymmetric plates. J Strain Anal Eng Des 36:169–176

    Article  Google Scholar 

  44. Alexandrov S, Jeng Y-R, Lomakin E (2011) Effect of pressure-dependency of the yield criterion on the development of plastic zones and the distribution of residual stresses in thin annular disks. Trans ASME J Appl Mech 78:031012

    Google Scholar 

  45. Alexandrov SE, Lomakin EV, Jeng Y-R (2012) Solution of the thermoelasticplastic problem for a thin disk of plastically compressible material subject to thermal loading. Dokl Phys 57:136–139

    Article  Google Scholar 

  46. Alexandrov S, Jeng Y-R, Lyamina E (2012) Influence of pressure-dependency of the yield criterion and temperature on residual stresses and strains in a thin disk. Struct Eng Mech 44:289–303

    Article  Google Scholar 

  47. Pirumov A, Alexandrov S, Jeng Y-R (2013) Enlargement of a circular hole in a disc of plastically compressible material. Acta Mech 224:2965–2976

    Article  MATH  MathSciNet  Google Scholar 

  48. Alexandrov S, Jeng Y-R, Lomakin E (2014) An exact semi-analytic solution for residual stresses and strains within a thin hollow disc of pressure-sensitive material subject to thermal loading. Meccanica 49:775–794

    Article  MATH  MathSciNet  Google Scholar 

  49. Alexandrov S, Lyamina E, Jeng Y-R (2012) Design of an annular disc subject to thermomechanical loading. Math Prob Eng 2012, Article ID 709178

    Google Scholar 

  50. Wang Y-C, Alexandrov S, Jeng Y-R (2013) Effects of thickness variations on the thermal elastoplastic behavior of annular discs. Struct Eng Mech 47:839–856

    Article  Google Scholar 

  51. Alexandrov S, Lyamina E, Jeng Y-R (2013) Plastic collapse of a thin annular disk subject to thermomechanical loading. Trans ASME J Appl Mech 80:051006

    Google Scholar 

  52. Alexandrov S, Wang Y-C, Aizikovich S (2014) Effect of temperature-dependent mechanical properties on plastic collapse of thin discs. Proc IMechE Part C: J Mech Eng Sci 228:2483–2487

    Article  Google Scholar 

  53. Alexandrov S, Wang Y-C, Jeng Y-R (2014) Elastic-plastic stresses and strains in thin discs with temperature-dependent properties subject to thermal loading. J Therm Stresses 37:488–505

    Article  Google Scholar 

  54. Alexandrov S, Pham C (2014) Plastic collapse mechanisms in thin disks subject to thermo-mechanical loading. Asia Pacific J Comput Eng 1:7

    Google Scholar 

  55. Alexandrov S, Mustafa Y (2014) A qualitative comparison of flow rules of pressure-dependent plasticity under plane stress conditions. J Eng Math 89:177–191

    Article  MathSciNet  Google Scholar 

  56. Alexandrova N, Alexandrov S (2004) Elastic-plastic stress distribution in a plastically anisotropic rotating disk. Trans ASME J Appl Mech 71:427–429

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Alexandrov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Alexandrov, S. (2015). Axisymmetric Thermo-Elastic-Plastic Problem Under Plane Stress Conditions. In: Elastic/Plastic Discs Under Plane Stress Conditions. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-14580-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14580-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14579-2

  • Online ISBN: 978-3-319-14580-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics