Skip to main content

Role of Metabolic Factors: Lipids, Glucose/Insulin Intolerance

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Overnutrition characterized by overconsumption of food rich in fat and carbohydrates is a significant contributor to hypertension, type 2 diabetes, and the cardiorenal syndrome (CRS). Obesity, insulin resistance, and diabetes mellitus are associated with a substantially increased prevalence of arterial disease (AD), which is involved in the risk of coronary, cerebral, and peripheral atherosclerosis and the clinical consequences of myocardial infarction, stroke, limb ischemia, and death. Although the underlying mechanisms and mediators of AD are not well understood, accumulating evidence supports the role of dysregulation of VSMCs, ECs, and vascular extracellular matrix in pathogenesis of AD. Risk factors related to CRS and misregulation of adaptive metabolic responses develop a complex network and contribute to the progression of AD. In this review, we will focus on the interaction of metabolic risk factors, adaptive metabolic response, and AD, highlighting pathophysiology and molecular mechanisms, as well as the contemporary understanding of potential therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krentz AJ (2003) Lipoprotein abnormalities and their consequences for patients with type 2 diabetes. Diabetes Obes Metab 5:S19–S27

    Article  CAS  PubMed  Google Scholar 

  2. Lüscher TF, Creager MA, Beckman JA, Cosentino F (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Circulation 108:1655–1661

    Article  PubMed  Google Scholar 

  3. Sowers JR (2013) Diabetes mellitus and vascular disease. Hypertension 61:943–947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jia G, Sowers JR (2014) New thoughts in an old player: role of nitrite in the treatment of ischemic revascularization. Diabetes 63:39–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Salomaa V, Riley W, Kark JD et al (1995) Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 91:1432–1443

    Article  CAS  PubMed  Google Scholar 

  6. Tounian P, Aggoun Y, Dubern B et al (2001) Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 358:1400–1404

    Article  CAS  PubMed  Google Scholar 

  7. Ho CT, Lin CC, Hsu HS et al (2011) Arterial stiffness is strongly associated with insulin resistance in Chinese–a population-based study (Taichung Community Health Study, TCHS). J Atheroscler Thromb 18:122–130

    Article  CAS  PubMed  Google Scholar 

  8. van Popele NM, Elizabeth Hak A, Mattace-Raso FU et al (2006) Impaired fasting glucose is associated with increased arterial stiffness in elderly people without diabetes mellitus: the Rotterdam Study. J Am Geriatr Soc 54:397–404

    Article  PubMed  Google Scholar 

  9. Roberts AC, Porter KE (2013) Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res 10:472–482

    Article  PubMed  Google Scholar 

  10. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 68:450–456

    Article  CAS  PubMed  Google Scholar 

  11. Sodhi CP, Kanwar YS, Sahai A (2003) Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol 284:H846–H852

    Article  CAS  PubMed  Google Scholar 

  12. Reusch JE, Wang CC (2011) Cardiovascular disease in diabetes: where does glucose fit in? J Clin Endocrinol Metab 96:2367–2376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Min Q, Bai YT, Jia G et al (2010) High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-gamma inactivation in human coronary artery endothelial cells. Exp Mol Pathol 88:133–137

    Article  CAS  PubMed  Google Scholar 

  14. Shanik MH, Xu Y, Skrha J et al (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31:S262–S268

    Article  CAS  PubMed  Google Scholar 

  15. Du X, Edelstein D, Obici S et al (2006) Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116:1071–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bender SB, McGraw AP, Jaffe IZ, Sowers JR (2013) Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 62:313–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Carmena R, Betteridge DJ (2004) Statins and diabetes. Semin Vasc Med 4:321–332

    Article  PubMed  Google Scholar 

  18. Arca M, Pigna G, Favoccia C (2012) Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr Vasc Pharmacol 10:684–686

    Article  CAS  PubMed  Google Scholar 

  19. Raj M (2012) Obesity and cardiovascular risk in children and adolescents. Indian J Endocrinol Metab 16:13–19

    Article  PubMed Central  PubMed  Google Scholar 

  20. Canale MP, Manca di Villahermosa S, Martino G et al (2013) Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013:865965

    Article  PubMed Central  PubMed  Google Scholar 

  21. Masterjohn C, Park Y, Lee J et al (2013) Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2. Nutrients 5:3311–3328

    Article  PubMed Central  PubMed  Google Scholar 

  22. Khitan Z, Kim DH (2013) Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr 2013:682673

    Google Scholar 

  23. Tappy L, Lê KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46

    Article  CAS  PubMed  Google Scholar 

  24. Muniyappa R, Sowers JR (2012) Endothelial insulin and IGF-1 receptors: when yes means NO. Diabetes 61:2225–2227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhang Y, Sowers JR, Ren J (2012) Pathophysiological insights into cardiovascular health in metabolic syndrome. Exp Diabetes Res 2012:320534

    PubMed Central  PubMed  Google Scholar 

  26. Mudau M, Genis A, Lochner A, Strijdom H (2012) Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 23:222–231

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159

    Article  CAS  PubMed  Google Scholar 

  28. Creager MA, Lüscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532

    Article  PubMed  Google Scholar 

  29. Doronzo G, Russo I, Mattiello L et al (2004) Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: influence of nitric oxide and of insulin resistance. Eur J Clin Invest 34:664–673

    Article  CAS  PubMed  Google Scholar 

  30. Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR (2012) Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab 302:E201–E208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Karwowski W, Naumnik B, Szczepański M, Myśliwiec M (2012) The mechanism of vascular calcification – a systematic review. Med Sci Monit 18:RA1–RA11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Townsend RR, Wimmer NJ, Chirinos JA et al (2010) Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens 23:282–289

    Article  PubMed Central  PubMed  Google Scholar 

  33. Speer MY, Yang HY, Brabb T et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104:733–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059

    Article  CAS  PubMed  Google Scholar 

  35. Blaha MJ, DeFilippis AP, Rivera JJ et al (2011) The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 34:749–751

    Article  PubMed Central  PubMed  Google Scholar 

  36. Olesen P, Nguyen K, Wogensen L et al (2007) Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am J Physiol Heart Circ Physiol 292:H1058–H1064

    Article  CAS  PubMed  Google Scholar 

  37. Yuan LQ, Zhu JH, Wang HW et al (2011) RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One 6:e29037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang CC, Sorribas V, Sharma G et al (2007) Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis 195:e65–e75

    Article  CAS  PubMed  Google Scholar 

  39. Mizobuchi M, Towler D, Slatopolsky E (2009) Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 20:1453–1464

    Article  CAS  PubMed  Google Scholar 

  40. Chung AW, Yang HH, Sigrist MK (2009) Matrix metalloproteinase-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res 84:494–504

    Article  CAS  PubMed  Google Scholar 

  41. Ganne S, Winer N (2008) Vascular compliance in the cardiometabolic syndrome. J Cardiometab Syndr 3:35–39

    Article  PubMed  Google Scholar 

  42. Gao L, Laude K, Cai H (2008) Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 38:137–155

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806

    Article  CAS  PubMed  Google Scholar 

  44. Whaley-Connell A, Sowers JR (2011) Indices of obesity and cardiometabolic risk. Hypertension 58:991–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu J, Shen W, Zhao B et al (2009) Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 61:1343–1352

    Article  CAS  PubMed  Google Scholar 

  46. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K et al (2014) Innate immune system cells in atherosclerosis. Arch Med Res 45:1–14

    Article  PubMed  Google Scholar 

  48. Aroor A, McKarns S, Nistala R et al (2013) DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med 3:48–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Aroor AR, McKarns S, Demarco VG et al (2013) Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 62:1543–1552

    Article  CAS  PubMed  Google Scholar 

  50. Legein B, Temmerman L, Biessen EA, Lutgens E (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70:3847–3869

    Article  CAS  PubMed  Google Scholar 

  51. Döring Y, Zernecke A (2012) Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 3:230

    Article  PubMed Central  PubMed  Google Scholar 

  52. Alberts-Grill N, Denning TL, Rezvan A, Jo H (2013) The role of the vascular dendritic cell network in atherosclerosis. Am J Physiol Cell Physiol 305:C1–C21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. He S, Li M, Ma X, Lin J, Li D (2010) CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 30:2621–2630

    Article  CAS  PubMed  Google Scholar 

  54. Huang CJ, Webb HE, Zourdos MC, Acevedo EO (2013) Cardiovascular reactivity, stress, and physical activity. Front Physiol 7:4–314

    Google Scholar 

  55. Xiong XQ, Chen WW, Zhu GQ (2014) Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol (Oxf) 210:468–478

    Article  CAS  Google Scholar 

  56. Underwood PC, Adler GK (2013) The Renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 15:59–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Wada T, Kenmochi H, Miyashita Y et al (2010) Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 151:2040–2049

    Article  CAS  PubMed  Google Scholar 

  58. Benetos A, Lacolley P, Safar ME (1997) Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 17:1152–1156

    Article  CAS  PubMed  Google Scholar 

  59. Garg R, Adler GK (2012) Role of mineralocorticoid receptor in insulin resistance. Curr Opin Endocrinol Diabetes Obes 19:168–175

    Article  CAS  PubMed  Google Scholar 

  60. Tomaschitz A, Ritz E, Pieske B, Rus-Machan J et al (2014) Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism 63:20–31

    Article  CAS  PubMed  Google Scholar 

  61. Brown JM, Williams JS, Luther JM et al (2014) Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension 63:273–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Tomaschitz A, Ritz E, Pieske B et al (2012) Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease. Cardiovasc Res 94:10–19

    Article  CAS  PubMed  Google Scholar 

  63. Jung SM, Jandu S, Steppan J et al (2013) Increased tissue transglutaminase activity contributes to central vascular stiffness in eNOS knockout mice. Am J Physiol Heart Circ Physiol 305:H803–H810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Thomas WG (2005) Double trouble for type 1 angiotensin receptors in atherosclerosis. N Engl J Med 352:506–508

    Article  CAS  PubMed  Google Scholar 

  65. Santhanam L, Tuday EC, Webb AK et al (2010) Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res 107:117–125

    Article  CAS  PubMed  Google Scholar 

  66. Weisbrod RM, Shiang T, Al Sayah L et al (2013) Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 62:1105–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brenda Hunter for her editorial assistance. This research was supported by NIH (R01 HL73101, R01 HL107910) and the Veterans Affairs Merit System (0018) for JRS. The authors have no conflict of interest associated with this manuscript.

Disclosure

The authors have no conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Sowers MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jia, G., Aroor, A.R., Sowers, J.R. (2015). Role of Metabolic Factors: Lipids, Glucose/Insulin Intolerance. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics