Skip to main content

Diabetes Mellitus: Alterations in Vessel Wall Properties

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Diabetes is an increasing major health problem worldwide. One of its characteristic manifestations is vascular disease. There are two different types of vascular disease in diabetes, one affecting small resistance arteries, arterioles, and capillaries (microvascular disease) and the other affecting large conductance vessels (macrovascular disease). Indeed, diabetes-induced vascular complications are the major cause of morbidity and mortality in these subjects and provoke considerable amount of disability, premature mortality, loss of productivity, and increased demands on health-care facilities. While hyperglycemia is a key factor for microvascular complications development, it is only one of the multiple factors capable of increasing the risk of atherosclerotic macrovascular disease in diabetes. Given the impact of diabetic vascular disease, great effort has been directed towards reducing vascular outcomes in diabetes. While a better glucose control has a doubtless beneficial effect in reducing microvascular disease, its role in improving macrovascular outcomes is yet controversial. This chapter will mainly discuss aspects of pathophysiology and pathogenesis involved in the development of vascular disease in diabetes, as well as the diagnosis of vascular disease and current therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (2013) IDF diabetes atlas, 6th edn. International Diabetes Federation, Brussels, http://www.idf.org/diabetesatlas

    Google Scholar 

  2. Barceló A, Aedo C, Rajpathak S, Robles S (2003) The cost of diabetes in Latin America and the Caribbean. Bull World Health Organ 81:19–27

    PubMed Central  PubMed  Google Scholar 

  3. American Diabetes Association (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36:1033–1046

    Article  PubMed Central  Google Scholar 

  4. Breton MC, Guénette L, Amiche MA et al (2013) Burden of diabetes on the ability to work: a systematic review. Diabetes Care 36:740–749

    Article  PubMed Central  PubMed  Google Scholar 

  5. American Diabetes Association (2014) Standards of medical care in diabetes 2014. Diabetes Care 37(Suppl 1):S14–S77

    Article  Google Scholar 

  6. Vamos EP, Bottle A, Edmonds ME et al (2010) Changes in the incidence of lower extremity amputations in individuals with and without diabetes in England between 2004 and 2008. Diabetes Care 33:2592–2597

    Article  PubMed Central  PubMed  Google Scholar 

  7. Moxey PW, Gogalniceanu P, Hinchliffe RJ et al (2011) Lower extremity amputations–a review of global variability in incidence. Diabet Med 28:1144–1153

    Article  CAS  PubMed  Google Scholar 

  8. De Marco R, Locatelli F, Zoppini G et al (1999) Cause-specific mortality in type 2 diabetes: the Verona Diabetes Study. Diabetes Care 22:756–761

    Article  PubMed  Google Scholar 

  9. Wei M, Gaskill SP, Haffner SM, Stern MP (1998) Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality: the San Antonio Heart Study. Diabetes Care 21:1167–1172

    Article  CAS  PubMed  Google Scholar 

  10. Blonde L (2007) State of diabetes care in the United States. Am J Manag Care 13(Suppl 2):S36–S40

    PubMed  Google Scholar 

  11. Ritz E (2013) Clinical manifestations and natural history of diabetic kidney disease. Med Clin N Am 97:19–29

    Article  PubMed  Google Scholar 

  12. Rahman S, Rahman T, Ismail AA, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9:767–780

    Article  CAS  PubMed  Google Scholar 

  13. Taddei S, Ghiadoni L, Virdis A et al (2003) Mechanisms of endothelial dysfunction: clinical significance and preventive non-pharmacological therapeutic strategies. Curr Pharm Des 9:2385–2402

    Article  CAS  PubMed  Google Scholar 

  14. Versari D, Daghini E, Virdis A et al (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32(Suppl 2):S314–S321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Brunner H, Cockcroft JR, Deanfield J et al., Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension (2005) Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 23:233–246

    Google Scholar 

  16. Tooke JE (1995) Microvascular function in human diabetes. A physiological perspective. Diabetes 44:721–726

    Article  CAS  PubMed  Google Scholar 

  17. Rattan V, Sultana C, Shen Y, Kalra VK (1997) Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Physiol 273(3 Pt 1):E453–E461

    CAS  PubMed  Google Scholar 

  18. Tesfamariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. Clin Invest 87:1643–1648

    Article  CAS  Google Scholar 

  19. Poston L, Taylor PD (1995) Endothelium-mediated vascular function in insulin-dependent diabetes mellitus. Clin Sci (Lond) 88:245–255

    CAS  Google Scholar 

  20. Creager MA, Lüscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532

    Article  PubMed  Google Scholar 

  21. Lüscher TF, Creager MA, Beckman JA, Cosentino F (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Circulation 108:1655–1661

    Article  PubMed  Google Scholar 

  22. Lerman A, Zeiher AM (2005) Endothelial function: cardiac events. Circulation 111:363–368

    Article  PubMed  Google Scholar 

  23. Kaiser N, Sasson S, Feener EP et al (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89

    Article  CAS  PubMed  Google Scholar 

  24. Stevens VJ, Vlassara H, Abati A, Cerami A (1977) Nonenzymatic glycosylation of hemoglobin. J Biol Chem 252:2998–3002

    CAS  PubMed  Google Scholar 

  25. Wolf BA, Williamson JR, Easom RA et al (1991) Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest 87:31–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  27. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  28. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tilton RG, Chang K, Pugliese G et al (1989) Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 38:1258–1270

    Article  CAS  PubMed  Google Scholar 

  30. Farmer DG, Kennedy S (2009) RAGE, vascular tone and vascular disease. Pharmacol Ther 124:185–194

    Article  CAS  PubMed  Google Scholar 

  31. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ishii H, Koya D, King GL (1998) Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med (Berl) 76:21–31

    Article  CAS  Google Scholar 

  33. Thallas-Bonke V, Thorpe SR, Coughlan MT et al (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57:460–469

    Article  CAS  PubMed  Google Scholar 

  34. Madonna R, Renna FV, Cellini C et al (2011) Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest 41:126–133

    Article  PubMed  Google Scholar 

  35. Setter SM, Campbell RK, Cahoon CJ (2003) Biochemical pathways for microvascular complications of diabetes mellitus. Ann Pharmacother 37:1858–1866

    Article  CAS  PubMed  Google Scholar 

  36. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–S30

    Article  CAS  PubMed  Google Scholar 

  37. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96:25–28

    Article  CAS  PubMed  Google Scholar 

  38. Pacher P, Obrosova IG, Mabley JG, Szabó C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12:267–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Madonna R, De Caterina R (2011) Cellular and molecular mechanisms of vascular injury in diabetes–part I: pathways of vascular disease in diabetes. Vascul Pharmacol 54:68–74

    Article  CAS  PubMed  Google Scholar 

  40. Morigi M, Angioletti S, Imberti B et al (1998) Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest 101:1905–1915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cagliero E, Roth T, Roy S, Lorenzi M (1991) Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 40:102–110

    Article  CAS  PubMed  Google Scholar 

  42. Balletshofer BM, Rittig K, Enderle MD et al (2000) Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 101:1780–1784

    Article  CAS  PubMed  Google Scholar 

  43. Del Turco S, Basta G (2012) An update on advanced glycation endproducts and atherosclerosis. Biofactors 38:266–274

    Article  PubMed  Google Scholar 

  44. Daroux M, Prévost G, Maillard-Lefebvre H et al (2010) Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab 36:1–10

    Article  CAS  PubMed  Google Scholar 

  45. Yudkin JS, Eringa E, Stehouwer CD (2005) “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365(9473):1817–1820

    Article  PubMed  Google Scholar 

  46. Wendt T, Harja E, Bucciarelli L et al (2006) RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 185:70–77

    Article  CAS  PubMed  Google Scholar 

  47. Basta G, Lazzerini G, Del Turco S et al (2005) At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 25:1401–1407

    Article  CAS  PubMed  Google Scholar 

  48. Basta G (2008) Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 196:9–21

    Article  CAS  PubMed  Google Scholar 

  49. Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker(fa/fa) rats. J Clin Invest 104:447–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Reaven GM, Chen YD (1988) Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev 4:639–652

    Article  CAS  PubMed  Google Scholar 

  51. Feener EP, King GL (1997) Vascular dysfunction in diabetes mellitus. Lancet 350(Suppl 1):SI9–SI13

    Article  PubMed  Google Scholar 

  52. Hsueh WA, Lyon CJ, Quinones MJ (2004) Insulin resistance and the endothelium. Am J Med 117:109–117

    Article  CAS  PubMed  Google Scholar 

  53. Steinberg HO, Brechtel G, Johnson A et al (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Malide D, Davies-Hill TM, Levine M, Simpson IA (1998) Distinct localization of GLUT-1, -3, and -5 in human monocyte-derived macrophages: effects of cell activation. Am J Physiol 274:E516–E526

    CAS  PubMed  Google Scholar 

  55. Pansuria M, Xi H, Li L et al (2012) Insulin resistance, metabolic stress, and atherosclerosis. Front Biosci (Schol Ed) 4:916–931

    Article  Google Scholar 

  56. Hayden MR, Tyagi SC (2004) Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 3:1

    Article  PubMed Central  PubMed  Google Scholar 

  57. Orasanu G, Plutzky J (2009) The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol 53(5 suppl):S35–S42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jax TW (2010) Metabolic memory: a vascular perspective. Cardiovasc Diabetol 9:51

    Article  PubMed Central  PubMed  Google Scholar 

  59. Langheinrich AC, Kampschulte M, Buch T, Bohle RM (2007) Vasa vasorum and atherosclerosis – Quid novi? Thromb Haemost 97:873–879

    CAS  PubMed  Google Scholar 

  60. Barger AC, Beeuwkes R 3rd, Lainey LI, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    Article  CAS  PubMed  Google Scholar 

  61. Barger AC, Beeuwkes R 3rd (1990) Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am J Cardiol 66:41G–43G

    Article  CAS  PubMed  Google Scholar 

  62. Kumamoto M, Nakashima Y, Sueishi K (1995) Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol 26:450–456

    Article  CAS  PubMed  Google Scholar 

  63. Moreno PR, Fuster V (2004) New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 44:2293–2300

    Article  CAS  PubMed  Google Scholar 

  64. Arcidiacono MA, Traveset A, Rubinat E et al (2013) Microangiopathy of large artery wall: a neglected complication of diabetes mellitus. Atherosclerosis 228:142–147

    Article  CAS  PubMed  Google Scholar 

  65. Angervall L, Dahl I, Säve-Söderbergh J (1966) The aortic vasa vasorum in juvenile diabetes. Pathol Microbiol 29:431–437

    CAS  Google Scholar 

  66. Purushothaman KR, Purushothaman M, Muntner P et al (2011) Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis. Vasc Med 16:103–108

    Article  PubMed  Google Scholar 

  67. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  PubMed  Google Scholar 

  68. Shah PK (2010) Screening asymptomatic subjects for subclinical atherosclerosis: can we, does it matter, and should we? J Am Coll Cardiol 56:98–105

    Article  PubMed  Google Scholar 

  69. Young LH, Wackers FJ, Chyun DA et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301:1547–1555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870

    Article  PubMed  Google Scholar 

  71. Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345

    Article  CAS  PubMed  Google Scholar 

  72. Schofield I, Malik R, Izzard A et al (2002) Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 106:3037–3043

    Article  PubMed  Google Scholar 

  73. Holman RR, Paul SK, Bethel MA et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    Article  CAS  PubMed  Google Scholar 

  74. Ray KK, Seshasai SR, Wijesuriya S et al (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373(9677):1765–1772

    Article  CAS  PubMed  Google Scholar 

  75. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997

    Article  Google Scholar 

  76. Colhoun HM, Betteridge DJ, Durrington PN et al (2004) CARDS investigators primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364(9435):685–696

    Article  CAS  PubMed  Google Scholar 

  77. Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591

    Article  CAS  PubMed  Google Scholar 

  78. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    Article  Google Scholar 

  79. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    Article  Google Scholar 

  80. Duckworth W, Abraira C, Moritz T et al., VADT Investigators (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139

    Google Scholar 

  81. Lewington S, Clarke R, Qizilbash N et al., Prospective Studies Collaboration (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360:1903–1913

    Google Scholar 

  82. UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS38. BMJ 317:703–713

    Article  PubMed Central  Google Scholar 

  83. Hansson L, Zanchetti A, Carruthers SG et al., HOT Study Group (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 351:1755–1762

    Google Scholar 

  84. Adler AI, Stratton IM, Neil HA et al (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321:412–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Salles GF, Leite NC, Pereira BB et al (2013) Prognostic impact of clinic and ambulatory blood pressure components in high-risk type 2 diabetic patients: the Rio de Janeiro Type 2 Diabetes Cohort Study. J Hypertens 31:2176–2186

    Article  CAS  PubMed  Google Scholar 

  86. Beckman JA, Paneni F, Cosentino F, Creager MA (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34:2444–2456

    Article  PubMed  Google Scholar 

  87. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355:253–259

    Article  Google Scholar 

  88. Lindholm LH, Ibsen H, Dahlöf B et al., LIFE Study Group (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention for End point reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:1004–1010

    Google Scholar 

  89. Berl T, Hunsicker LG, Lewis JB et al., Irbesartan Diabetic Nephropathy Trial, Collaborative Study Group (2003) Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med 138:542–549

    Google Scholar 

  90. Turnbull F (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362:1527–1535

    Article  CAS  PubMed  Google Scholar 

  91. Pyorala K, Pedersen TR, Kjekshus J et al (1997) Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 20:614–620

    Article  CAS  PubMed  Google Scholar 

  92. Peto R, Heart Protection Study Collaborative Group (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo controlled trial. Lancet 361:2005–2016

    Article  PubMed  Google Scholar 

  93. Goldberg RB, Mellies MJ, Sacks FM et al., The Care Investigators (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose intolerant myocardial infarction survivor with average cholesterol levels: subgroup analyses in the Cholesterol And Recurrent Events (CARE) trial. Circulation 98:2513–2519

    Google Scholar 

  94. Shepherd J, Barter P, Carmena R et al (2006) Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care 29:1220–1226

    Article  CAS  PubMed  Google Scholar 

  95. Sever PS, Poulter NR, Dahlöf B et al (2005) Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial Lipid-Lowering Arm (ASCOT-LLA). Diabetes Care 28:1151–1157

    Article  CAS  PubMed  Google Scholar 

  96. Knopp RH, d’Emden M, Smilde JG, Pocock SJ (2006) Efficacy and safety of atorvastatin in the prevention of cardiovascular endpoints in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in noninsulin- dependent diabetes mellitus (ASPEN). Diabetes Care 29:1478–1485

    Article  CAS  PubMed  Google Scholar 

  97. Colhoun HM, Betteridge DJ, Durrington PN et al., CARDS Investigators (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomized placebo-controlled trial. Lancet 364:685–696

    Google Scholar 

  98. Kearney PM, Blackwell L, Collins R et al., Cholesterol Treatment Trialists’ (CTT) Collaborators (2008) Efficacy of cholesterol lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125

    Google Scholar 

  99. Grundy SM, Cleeman JI, Merz CN et al., National Heart Lung, and Blood Institute, American College of Cardiology Foundation, American Heart Association (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239

    Google Scholar 

  100. Rubins HB, Robins SJ, Collins D et al., Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med 341:410–418

    Google Scholar 

  101. Keech A, Simes RJ, Barter P et al., FIELD study investigators (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861

    Google Scholar 

  102. Ginsberg HN, Elam MB, Lovato LC et al., ACCORD Study Group (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574

    Google Scholar 

  103. Boden WE, Probstfield JL, Anderson T, et al., AIM-HIGH Investigators (2011) Niacin in patients with low HDL-cholesterol levels receiving intensive statin therapy. N Engl J Med 365:2255–2267

    Google Scholar 

  104. Jones PH, Davidson MH (2005) Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol 95:120–122

    Article  CAS  PubMed  Google Scholar 

  105. Vandvik PO, Lincoff AM, Gore JM et al (2012) Primary and secondary prevention of cardiovascular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141:e637S–e668S

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Belch J, MacCuish A, Campbell I et al., Prevention of Progression of Arterial Disease and Diabetes Study Group, Diabetes Registry Group, Royal College of Physicians Edinburgh (2008) The Prevention of Progression of Arterial Disease and Diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 337:a1840

    Google Scholar 

  107. Kataja-Tuomola MK, Ogawa H, Nakayama M et al., Japanese Primary Prevention of Atherosclerosis with Aspirin for Diabetes (JPAD) Trial Investigators (2008) Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA 300:2134–2141

    Google Scholar 

  108. Pignone M, Alberts MJ, Colwell JA et al., American Diabetes Association, American Heart Association, American College of Cardiology Foundation (2010) Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care 33:1395–1402

    Google Scholar 

  109. Katsiki N, Papadopoulou SK, Fachantidou AI, Mikhailidis DP (2013) Smoking and vascular risk: are all forms of smoking harmful to all types of vascular disease? Pub Health 127:435–441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil F. Salles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardoso, C.R.L., Salles, G.F. (2015). Diabetes Mellitus: Alterations in Vessel Wall Properties. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics