Skip to main content

Neurohormonal Interactions

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Several metabolic, humoral, local, and neural influences contribute to the homeostatic control of the cardiovascular system. All these factors physiologically interact with each other and participate in the regulation of cardiac as well as vascular function. Both endothelial and sympathetic functions seem to be the main important regulatory mechanisms involved in maintaining the homeostatic balance and participating in the cardiovascular responses to environmental needs. The alterations of these mechanisms represent the key factor for the cardiovascular modifications typical of several clinical conditions, such as heart, kidney, lung, and liver diseases, as well as obesity and diabetes, and represent the target for non-pharmacologic and pharmacologic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyss JM, Oparil S, Chen YF (1990) The role of the central nervous system in hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management, 3rd edn. Raven Press, New York, pp 679–701

    Google Scholar 

  2. Goldstein DS, Kopin IJ (1990) The autonomic nervous system and catecholamines in normal blood pressure control and in hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management, 3rd edn. Raven Press, New York, pp 711–747

    Google Scholar 

  3. Chalmers J, Arnolda L, Llewellyn-Smith I et al (1997) Central neural control of the cardiovascular system. In: Zanchetti A, Mancia G (eds) Handbook of hypertension, vol 17, Pathophysiology of hypertension. Elsevier, Amsterdam, pp 524–567

    Google Scholar 

  4. Wallin BG, Charkoudian N (2007) Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve 36:595–614

    Article  CAS  PubMed  Google Scholar 

  5. Mancia G, Grassi G, Ferrari AU (1997) Reflex control of the circulation in experimental and human hypertension. In: Zanchetti A, Mancia G (eds) Handbook of hypertension, vol 17, Pathophysiology of hypertension. Elsevier, Amsterdam, pp 568–601

    Google Scholar 

  6. Fink GD, Arthur C (2009) Corcoran memorial lecture. Sympathetic activity, vascular capacitance, and long-term regulation of arterial pressure. Hypertension 53:307–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Grassi G (2009) Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 54:690–697

    Article  CAS  PubMed  Google Scholar 

  8. Grassi G (2001) Renin-angiotensin-sympathetic crosstalk in hypertension: reappraising the relevance of peripheral interactions. J Hypertens 19:1713–1716

    Article  CAS  PubMed  Google Scholar 

  9. Patel KP, Li YF, Hirooka Y (2001) Role of nitric oxide in central sympathetic outflow. Exp Biol Med 226:814–824

    CAS  Google Scholar 

  10. Bruno RM, Sudano I, Ghiadoni L et al (2011) Interactions between sympathetic nervous system and endogenous endothelin in patients with essential hypertension. Hypertension 57:79–84

    Article  CAS  PubMed  Google Scholar 

  11. Hirooka Y, Kishi T, Sakai K et al (2011) Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 300:R818–R826

    Article  CAS  PubMed  Google Scholar 

  12. Sverrisdottir YB, Jansson LM, Hagg U, Gan LM (2010) Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals. PLos One 5:e9257. doi:10.1371/journal.pone.0009257

    Article  PubMed Central  PubMed  Google Scholar 

  13. Swierblewska E, Hering D, Kara T et al (2010) An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens 28:979–984

    Article  CAS  PubMed  Google Scholar 

  14. Padilla J, Young CN, Simmons GH et al (2010) Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns. Am J Physiol Heart Circ Physiol 298:H1128–H1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lembo G, Napoli R, Capaldo B et al (1992) Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J Clin Invest 90:24–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. MacGregor GA, Markandu ND, Roulston JE, Jones JC (1981) Maintenance of blood pressure by the renin-angiotensin system in normal man. Nature 291:329–331

    Article  CAS  PubMed  Google Scholar 

  17. Reid IA (1992) Interactions between Ang II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262:E763–E778

    CAS  PubMed  Google Scholar 

  18. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  CAS  PubMed  Google Scholar 

  19. Carlson SH, Wyss JM (2008) Neurohormonal regulation of the sympathetic nervous system: new insights into central mechanisms of action. Curr Hypertens Rep 10:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gao L, Wang W, Li YL et al (2005) Sympathoexcitation by central Ang II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol 288:H2271–H2279

    Article  CAS  PubMed  Google Scholar 

  21. Li YF, Wang W, Mayhan WG, Patel KP (2006) Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 290:R1035–R1043

    Article  CAS  PubMed  Google Scholar 

  22. Reit E (1972) Actions of angiotensin on the adrenal medulla and autonomic ganglia. Fed Proc 31:1338–1343

    CAS  PubMed  Google Scholar 

  23. Starke K (1977) Regulation of noradrenaline release by presynaptic receptor system. Rev Physiol Biochem Pharmacol 77:1–124

    Article  CAS  PubMed  Google Scholar 

  24. Taddei S, Virdis A, Mattei P et al (1995) Angiotensin II and sympathetic activity in sodium-restricted essential hypertension. Hypertension 25:595–601

    Article  CAS  PubMed  Google Scholar 

  25. Saino A, Pomidossi G, Perondi R et al (1997) Intracoronary angiotensin II potentiates coronary sympathetic vasoconstriction in humans. Circulation 96:148–153

    Article  CAS  PubMed  Google Scholar 

  26. Taddei S, Grassi G (2005) Angiotensin II as the link between nitric oxide and neuroadrenergic function. J Hypertens 23:935–937

    Article  CAS  PubMed  Google Scholar 

  27. van der Linde NAJ, Boomsma F, van der Meiracker AH (2005) Role of the nitric oxide in modulating systemic pressor responses to different vasoconstrictors in man. J Hypertens 23:1009–1015

    Article  PubMed  Google Scholar 

  28. Hennington BS, Zhang H, Miller MT et al (1998) Angiotensin II stimulates synthesis of endothelial nitric oxide synthase. Hypertension 31:283–288

    Article  CAS  PubMed  Google Scholar 

  29. Perondi R, Saino A, Tio RA et al (1992) ACE inhibition attenuates sympathetic coronary vasoconstriction in patients with coronary artery disease. Circulation 85:2004–2013

    Article  CAS  PubMed  Google Scholar 

  30. Saino A, Pomidossi G, Perondi R et al (2000) Modulation of sympathetic coronary vasoconstriction by cardiac renin-angiotensin system in human coronary artery disease. Circulation 101:2277–2283

    Article  CAS  PubMed  Google Scholar 

  31. Dhaun N, Goddard J, Kohan DE et al (2008) Role of endothelin-1 in clinical hypertension: 20 years on. Hypertension 52:452–459

    Article  CAS  PubMed  Google Scholar 

  32. Mosqueda-Garcia R, Inagami T, Appalsamy M et al (1993) Endothelin as a neuro peptide. Cardiovascular effects in the brainstem of normotensive rats. Circ Res 72:20–35

    Article  CAS  PubMed  Google Scholar 

  33. Spieker LE, Luscher TF, Noll G (2003) ETA receptors mediated vasoconstriction of large conduit arteries during reduced flow in humans. J Cardiovasc Pharmacol 42:315–318

    Article  CAS  PubMed  Google Scholar 

  34. Verhaar MC, Strachan FE, Newby DE et al (1998) Endothelin-A receptor antagonist-mediated vasodilation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97:752–756

    Article  CAS  PubMed  Google Scholar 

  35. Gulati A, Rebello S, Kumar A (1997) Role of sympathetic nervous system in cardiovascular effects of centrally administered endothelin-1 in rats. Am J Physiol 273:H1177–H1186

    CAS  PubMed  Google Scholar 

  36. Nakamura K, Sasaki S, Moriguchi J et al (1999) Central effects of endothelin and its antagonists on sympathetic and cardiovascular regulation in SHR-SP. J Cardiovasc Pharmacol 33:876–882

    Article  CAS  PubMed  Google Scholar 

  37. Taddei S, Virdis A, Ghiadoni L et al (1999) Vasoconstriction to endogenous endothelin-1 is increased in the peripheral circulation of patients with essential hypertension. Circulation 100:1680–1683

    Article  CAS  PubMed  Google Scholar 

  38. Mortensen LH (1999) Endothelin and the central and peripheral nervous systems: a decade of endothelin research. Clin Exp Pharmacol Physiol 26:980–984

    Article  CAS  PubMed  Google Scholar 

  39. Mohr E, Richter D (1994) Vasopressin in the regulation of body functions. J Hypertens 12:577–584

    Google Scholar 

  40. Inagami T (1994) Atrial natriuretic factor as a volume regulator. J Clin Pharmacol 34:424–426

    Article  CAS  PubMed  Google Scholar 

  41. Ackerman W, Irizawa TG, Milojevic S, Sonnemberg H (1984) Cardiovascular effects of atrial extracts in anesthetized rats. Can J Physiol Pharmacol 62:819–826

    Article  Google Scholar 

  42. Ferrari AU, Daffonchio A, Sala C et al (1990) Atrial natriuretic factor and arterial baroreceptor reflexes in unanesthetized rats. Hypertension 15:162–167

    Article  CAS  PubMed  Google Scholar 

  43. Thoren P, Mark AL, Morgan D et al (1986) Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am J Physiol 251:H1252–H1259

    CAS  PubMed  Google Scholar 

  44. Cheung BM, Brown MJ (1994) Plasma brain natriuretic peptide in essential hypertension. J Hypertens 12:449–454

    CAS  PubMed  Google Scholar 

  45. Sergeeva IA, Christoffels VM (2013) Regulation of expression of atrial and brain natriuretic peptides biomarkers for heart development and disease. Biochem Biophys Acta 1832:2403–2413

    CAS  PubMed  Google Scholar 

  46. Seeger W, Adir Y, Barbera JA et al (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62:D109–D116

    Article  PubMed  Google Scholar 

  47. Mishra RK, Beatty AL, Jaganath R et al (2014) B-type natriuretic peptides for the prediction of cardiovascular events in patients with stable coronary heart disease: the heart and soul study. J Am Heart Assoc 3:e000907. doi:10.1161/JAHA.114.000907

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bentsson J, Zia E, Borne Y et al (2014) Plasma natriuretic peptides and incidence of subtypes of ischemic stroke. Cardiovasc Dis 37:444–450

    Google Scholar 

  49. Henriksen JH, Gotze IP, Fuglsang S et al (2003) Increased circulating pro-brain natriuretic peptide (pro-BNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut 52:1511–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. de Bold AJ (2009) Cardiac natriuretic peptides gene expression and secretion on inflammation. J Investig Med 57:29–32

    PubMed  Google Scholar 

  51. Dimitroulas T, Giannakoulas G, Karvounis H et al (2012) B-type natriuretic peptide in rheumatic diseases: a cardiac biomarker or a sophisticated acute phase reactant? Autoimmun Rev 11:837–843

    Article  CAS  PubMed  Google Scholar 

  52. Barton M, Beny JL, d’Uscio LV et al (1998) Endothelium independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. J Cardiovasc Pharmacol 31:377–383

    Article  CAS  PubMed  Google Scholar 

  53. Regoli D, Plante GE, Gobell F Jr (2012) Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther 135:94–111

    Article  CAS  PubMed  Google Scholar 

  54. Kayashima Y, Smithies O, Kakoki M (2012) The kallikrein-kinin system and oxidative stress. Curr Opin Nephrol Hypertens 21:92–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Rhaleb NE, Yang XP, Carretero OA (2011) The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 1:971–993

    PubMed  Google Scholar 

  56. Gothberg G (1994) Physiology of the renomedullary depressor system. J Hypertens 12:S57–S64

    CAS  Google Scholar 

  57. Samson WK (1999) Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol 61:363–389

    Article  CAS  PubMed  Google Scholar 

  58. Holmes D, Campbell M, Harbinson M, Bell D (2013) Protective effects of intermedin on cardiovascular, pulmonary and renal diseases: comparison with adrenomedullin and CGRP. Curr Protein Pept Sci 14:294–329

    Article  CAS  PubMed  Google Scholar 

  59. Rubanyi GM, Johns A, Kauser K (2002) Effects of estrogen on endothelial function and angiogenesis. Vasc Pharmacol 38:89–98

    Article  CAS  Google Scholar 

  60. Chambliss KL, Shaul PW (2002) Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 23:665–686

    Article  CAS  PubMed  Google Scholar 

  61. Kleinert H, Wallerath T, Euchenhofer C et al (1998) Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involved. Hypertension 31:582–588

    Article  CAS  PubMed  Google Scholar 

  62. Davidge ST, Zhang Y (1998) Estrogen replacement suppresses a prostaglandin H synthase-dependent vasoconstrictor in rat mesenteric arteries. Circ Res 83:388–395

    Article  CAS  PubMed  Google Scholar 

  63. Virdis A, Ghiadoni L, Pinto S, Lombardo M, Petraglia F, Gennazzani A, Buralli S, Taddei S, Salvetti A (2000) Mechanisms responsible for endothelial dysfunction associated with acute estrogen deprivation in normotensive women. Circulation 101:2258–2263

    Article  CAS  PubMed  Google Scholar 

  64. Tolbert T, Oparil S (2001) Cardiovascular effects of estrogen. Am J Hypertens 14:186S–193S

    Article  CAS  PubMed  Google Scholar 

  65. Muniyappa R, Montagnani M, Koh KK, Quon MJ (2007) Cardiovascular action of insulin. Endocr Rev 28:463–491

    Article  CAS  PubMed  Google Scholar 

  66. Muniyappa R, Yavuz S (2012) Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol 378:59–69

    Article  PubMed Central  PubMed  Google Scholar 

  67. Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586

    Article  CAS  PubMed  Google Scholar 

  68. Barrett EJ, Wang H, Upchurch CT, Liu Z (2011) Insulin regulates its own delivery to skeletal muscle by fed-forward actions on the vasculature. Am J Physiol Endocrinol Metab 301:E252–E263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Womack L, Peters D, Barrett EJ et al (2009) Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. J Am Coll Cardiol 53:2175–2183

    Article  PubMed Central  PubMed  Google Scholar 

  70. Luscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC Press, Florida

    Google Scholar 

  71. Seddon MD, Chowienczyk PJ, Brett SE et al (2008) Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation 117:1991–1996

    Article  CAS  PubMed  Google Scholar 

  72. Bruno RM, Taddei S (2011) Nitric oxide. In: Mooren FC, Skinner JS (eds) Encyclopedia of exercise medicine in health and disease. Springer, Berlin, pp 645–648

    Google Scholar 

  73. Huang M, Leblanc ML, Hester RL (1994) Systemic and regional hemodynamics after nitric oxide synthase inhibition: role of a neurogenic mechanism. Am J Physiol 267:R84–R88

    CAS  PubMed  Google Scholar 

  74. Sakuma I, Togashi H, Yoshioka M et al (1992) NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circ Res 7:607–611

    Article  Google Scholar 

  75. Cunha RS, Cabral M, Vasquez EC (1993) Evidence that the autonomic nervous system plays a major role in the L-NAME-induced hypertension in conscious rats. Am J Hypertens 6:806–809

    CAS  PubMed  Google Scholar 

  76. Sander M, Hansen PG, Victor RG (1995) Sympathetically mediated hypertension caused by chronic inhibition of nitric oxide. Hypertension 26:691–695

    Article  CAS  PubMed  Google Scholar 

  77. Zanzinger J, Czachurski J, Seller H (1995) Inhibition of basal and reflex-mediated sympathetic activity in the RVLM by nitric oxide. Am J Physiol 268:R958–R962

    CAS  PubMed  Google Scholar 

  78. Zhang K, Mayhan WG, Patel KP (1997) Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol 273:R864–R872

    CAS  PubMed  Google Scholar 

  79. Zucker IH (2006) Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension 48:1005–1011

    Article  CAS  PubMed  Google Scholar 

  80. Toda N, Okamura T (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55:271–324

    Article  CAS  PubMed  Google Scholar 

  81. Simaan J, Sabra R (2011) In vivo evidence of a role for nitric oxide in regulating the activity of the norepinephrine transporter. Eur J Pharmacol 671:102–106

    Article  CAS  PubMed  Google Scholar 

  82. Cosentino F, Luscher TF (1998) Tetrahydrobiopterin and endothelial function. Eur Heart J 19:G3–G8

    CAS  PubMed  Google Scholar 

  83. Wang HD, Pagano PJ, Du Y et al (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    Article  CAS  PubMed  Google Scholar 

  84. Hishikawa K, Oemar BS, Yang Z, Luscher TF (1997) Pulsatile stretch stimulates superoxide production and activates nuclear factor kB in human coronary smooth muscle. Circ Res 81:797–801

    Article  CAS  PubMed  Google Scholar 

  85. Laycock SK, Vogel T, Forfia PR et al (1998) Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney. Circ Res 82:1263–1271

    Article  CAS  PubMed  Google Scholar 

  86. Shen W, Hintze TH, Wolin MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92:3505–3512

    Article  CAS  PubMed  Google Scholar 

  87. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79:363–380

    Article  CAS  PubMed  Google Scholar 

  88. Cooper CJ, Landzberg MJ, Anderson TJ et al (1996) Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation 93:266–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Seravalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seravalle, G., Grassi, G. (2015). Neurohormonal Interactions. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics