Skip to main content

Definition and Epidemiology of Arterial Disease

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Cardiovascular diseases (CVDs) are the number one cause of death globally and account for around a third of all deaths worldwide [1, 2]. In 2008, an estimated 17.3 million people died from these conditions which is 48 % of noncommunicable diseases; of these, 6.2 million were a consequence of stroke and 7.3 million due to coronary artery disease [3]. In the UK alone, 160,000 people died of CVD in 2001 [4]. The number of deaths from CVDs is predicted to rise to around 23 million by 2030 [5], thus highlighting the need for better understanding of these disorders and exploration of new treatment and prevention strategies both at individual and population level. Developing countries will suffer a similar fate if steps are not taken urgently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alwan A (2011) World Health Organisation: global status report on noncommunicable diseases 2010. World Health Organization, Geneva

    Google Scholar 

  2. Mendis S, Lindholm LH, Anderson SG et al (2011) Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J Clin Epidemiol 64:1451–1462

    Article  PubMed  Google Scholar 

  3. Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organisation, Geneva

    Google Scholar 

  4. Foundation BH (2014) Cardiovascular disease. (cited 24 Jun 2014); Available from: http://www.bhf.org.uk/heart-health/conditions/cardiovascular-disease.aspx

  5. Mathers C, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  PubMed Central  PubMed  Google Scholar 

  6. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7(2):77–86

    Article  PubMed Central  PubMed  Google Scholar 

  7. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zernecke A, Bot I, Djalali-Talab Y et al (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102(2):209–217

    Article  CAS  PubMed  Google Scholar 

  9. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422

    Article  CAS  PubMed  Google Scholar 

  10. Zernecke A, Weber C (2012) Improving the treatment of atherosclerosis by linking anti-inflammatory and lipid modulating strategies. Heart 98(21):1600–1606

    Article  PubMed  Google Scholar 

  11. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1(3):183–198

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Clarkson P, Celermajer DS, Donald AE et al (1996) Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 28(3):573–579

    Google Scholar 

  13. Skrha J, Vackva I, Kvasnicka J et al (1990) Plasma free N-terminal fibronectin 30-kDa domain as a marker of endothelial dysfunction in type 1 diabetes mellitus. Eur J Clin Invest 20(2):171–176

    Google Scholar 

  14. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3(6):853–876

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Hamasaki S, Al Suwaidi J, Higano ST et al (2000) Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol 35(6):1654–1660

    Google Scholar 

  16. Yoshida M, Imalzumi T, Ando S et al (1991) Impaired forearm vasodilatation by acetylcholine in patients with hypertension. Heart Vessels 6(4):218–223

    Google Scholar 

  17. Taddei S, Virdis A, Ghiadoni L et al (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38(2):274–279

    Google Scholar 

  18. Versari D, Daghini E, Virdis A et al (2009) The ageing endothelium, cardiovascular risk and disease in man. Exp Physiol 94(3):317–321

    Google Scholar 

  19. Virdis A, Ghiadoni L, Giannarelli C, Taddei S et al (2010) Endothelial dysfunction and vascular disease in later life. Maturitas 67(1):20–24

    Google Scholar 

  20. Stehouwer CD, Smulders YM (2006) Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol 17(8):2106–2111

    Article  CAS  PubMed  Google Scholar 

  21. Prieto D, Contreras C, Sanchez A (2014) Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 12(3):412–426

    Article  CAS  PubMed  Google Scholar 

  22. Toda N, Okamura T (2013) Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 53(12):1228–1239

    Article  PubMed  Google Scholar 

  23. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438

    Article  CAS  PubMed  Google Scholar 

  24. Mulvany MJ (2012) Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 110(1):49–55

    Article  CAS  PubMed  Google Scholar 

  25. Endemann DH, Pu Q, DeCiuceis C et al (2004) Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment. Hypertension 43(2):399–404

    Article  CAS  PubMed  Google Scholar 

  26. Schofield I, Malik R, Izzard A et al (2002) Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 106(24):3037–3043

    Google Scholar 

  27. Rosei EA, Rizzoni D (2010) Small artery remodelling in diabetes. J Cell Mol Med 14(5):1030–1036

    PubMed  Google Scholar 

  28. Rizzoni D, De Ciuceis C, Porteri E et al (2012) Structural alterations in small resistance arteries in obesity. Basic Clin Pharmacol Toxicol 110(1):56–62

    Article  CAS  PubMed  Google Scholar 

  29. De Ciuceis C, Porteri E, Rizzoni D et al (2011) Effects of weight loss on structural and functional alterations of subcutaneous small arteries in obese patients. Hypertension 58(1):29–36

    Article  PubMed  Google Scholar 

  30. Sun X, Belkin N, Feinberg MW (2013) Endothelial microRNAs and atherosclerosis. Curr Atheroscler Rep 15(12):372

    Article  PubMed  Google Scholar 

  31. Madrigal-Matute J, Rotllan N, Arand JF, Fernandez-Hernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15(5):322

    Google Scholar 

  32. Rayner KJ, Moore KJ (2012) The plaque “micro” environment: microRNAs control the risk and the development of atherosclerosis. Curr Atheroscler Rep 14(5):413–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zampetaki A, Dudek K, Mayr M (2013) Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling. Free Radic Biol Med 64:69–77

    Article  CAS  PubMed  Google Scholar 

  34. Imanishi T, Akasaka T (2013) MicroRNAs in peripheral artery disease. Curr Top Med Chem 13(13):1589–1595

    Article  CAS  PubMed  Google Scholar 

  35. Koutsis G, Siasos G, Spengos K (2013) The emerging role of microRNA in stroke. Curr Top Med Chem 13(13):1573–1588

    Article  CAS  PubMed  Google Scholar 

  36. Hulsmans M, Holvoet P (2013) MicroRNAs as early biomarkers in obesity and related metabolic and cardiovascular diseases. Curr Pharm Des 19(32):5704–5717

    Article  CAS  PubMed  Google Scholar 

  37. Vavuranakis M, Kariori M, Vrachatis D et al (2013) MicroRNAs in aortic disease. Curr Top Med Chem 13(13):1559–1572

    Google Scholar 

  38. Quiat D, Olson EN (2013) MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 123(1):11–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Celermajer DS (2008) Reliable endothelial function testing: at our fingertips? Circulation 117(19):2428–2430

    Article  PubMed  Google Scholar 

  40. Tousoulis D, Antoniades C, Stefanadis C (2005) Evaluating endothelial function in humans: a guide to invasive and non-invasive techniques. Heart 91(4):553–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sun C, Wang JJ, Mackey DA, Wong TY (2009) Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol 54(1):74–95

    Article  PubMed  Google Scholar 

  42. Nguyen TT, Wong TY (2006) Retinal vascular manifestations of metabolic disorders. Trends Endocrinol Metab 17(7):262–268

    Article  CAS  PubMed  Google Scholar 

  43. Wong TY, Duncan BB, Golden SH et al (2004) Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Invest Ophthalmol Vis Sci 45(9):2949–2954

    Article  PubMed  Google Scholar 

  44. Zhao Y, Yang K, Wang F et al (2012) Associations between metabolic syndrome and syndrome components and retinal microvascular signs in a rural Chinese population: the Handan Eye study. Graefes Arch Clin Exp Ophthalmol 250(12):1755–1763

    Article  PubMed  Google Scholar 

  45. Kawasaki R, Tielsh JM, Wang JJ et al (2008) The metabolic syndrome and retinal microvascular signs in a Japanese population: the Funagata study. Br J Ophthalmol 92(2):161–166

    Article  CAS  PubMed  Google Scholar 

  46. Ding J, Wai KL, McGeechan K et al (2014) Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens 32(2):207–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kawasaki R, Xie J, Cheung N et al (2012) Retinal microvascular signs and risk of stroke: the Multi-Ethnic Study of Atherosclerosis (MESA). Stroke 43(12):3245–3251

    Article  PubMed Central  PubMed  Google Scholar 

  48. Cheung CY, Tay WT, Ikram MK et al (2013) Retinal microvascular changes and risk of stroke: the Singapore Malay Eye study. Stroke 44(9):2402–2408

    Article  PubMed  Google Scholar 

  49. Wang L, Wong TY, Sharrett AR et al (2008) Relationship between retinal arteriolar narrowing and myocardial perfusion: multi-ethnic study of atherosclerosis. Hypertension 51(1):119–126

    Article  CAS  PubMed  Google Scholar 

  50. Al-Fiadh AH, Farouque O, Kawasaki R et al (2014) Retinal microvascular structure and function in patients with risk factors of atherosclerosis and coronary artery disease. Atherosclerosis 233(2):478–484

    Article  CAS  PubMed  Google Scholar 

  51. De Silva DA, Manzano JJ, Liu EY et al (2011) Retinal microvascular changes and subsequent vascular events after ischemic stroke. Neurology 77(9):896–903

    Article  PubMed  Google Scholar 

  52. Taylor B, Rochtchina E, Wang JJ et al (2007) Body mass index and its effects on retinal vessel diameter in 6-year-old children. Int J Obes (Lond) 31(10):1527–1533

    Article  CAS  Google Scholar 

  53. Cheung N, Saw SM, Islam FM et al (2007) BMI and retinal vascular caliber in children. Obesity (Silver Spring) 15(1):209–215

    Article  Google Scholar 

  54. Murgan I, Beyer S, Kotliar KE et al (2013) Arterial and retinal vascular changes in hypertensive and prehypertensive adolescents. Am J Hypertens 26(3):400–408

    Article  CAS  PubMed  Google Scholar 

  55. Liew G, Mitchell P, Wong TY, Wang JJ (2012) Retinal microvascular signs are associated with chronic kidney disease in persons with and without diabetes. Kidney Blood Press Res 35(6):589–594

    Article  CAS  PubMed  Google Scholar 

  56. Finucane MM, Stevens GA, Cowan MJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567

    Article  PubMed  Google Scholar 

  57. Gutierrez-Fisac JL, Regidor E, Banegas JR, Rodriguez A (2002) The size of obesity differences associated with educational level in Spain, 1987 and 1995/97. J Epidemiol Community Health 56(6):457–460

    Google Scholar 

  58. Martinez JA, Kearney JM, Kafatos A et al (1999) Variables independently associated with self-reported obesity in the European Union. Public Health Nutr 2(1A):125–133

    Article  CAS  PubMed  Google Scholar 

  59. Sundquist J, Johansson SE (1998) The influence of socioeconomic status, ethnicity and lifestyle on body mass index in a longitudinal study. Int J Epidemiol 27(1):57–63

    Article  CAS  PubMed  Google Scholar 

  60. van Lenthe FJ, Schrijvers CTM, Droomers M et al (2004) Investigating explanations of socio-economic inequalities in health: the Dutch GLOBE study. Eur J Public Health 14(1):63–70

    Article  PubMed  Google Scholar 

  61. The NHS Information Centre LS (2011) Statistics on obesity, physical activity and diet: England, 2011. http://www.hsic.gov.uk. Published 24 Feb 2011

  62. Greenstein AS, Khavandi K, Withers SB et al (2009) Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119(12):1661–1670

    Article  CAS  PubMed  Google Scholar 

  63. Gil-Ortega M, Stucchi P, Guzman-Ruiz R et al (2010) Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity. Endocrinology 151(7):3299–3306

    Article  CAS  PubMed  Google Scholar 

  64. Gao YJ, Lu C, Su L-Y et al (2007) Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol 151(3):323–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lee YC, Chang HH, Chiang CL et al (2011) Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation 124(10):1160–1171

    Article  PubMed  Google Scholar 

  66. Aghamohammadzadeh R, Greenstein AS, Yadav R et al (2013) Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol 62(2):128–135

    Article  PubMed Central  PubMed  Google Scholar 

  67. Jha P, Chaloupka FJ (1999) Curbing the epidemic: governments and the economics of tobacco control. The World Bank. Tob Control 8(2):196–201

    Article  Google Scholar 

  68. Critchley JA, Capewell S (2003) Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 290(1):86–97

    Article  PubMed  Google Scholar 

  69. Laslett LJ, Alagona P Jr, Clark BA 3rd et al (2012) The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 60(25 Suppl):S1–S49

    Article  PubMed  Google Scholar 

  70. Avolio AP, Chen SG, Wang RP et al (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68(1):50–58

    Article  CAS  PubMed  Google Scholar 

  71. McEniery CM, Yasmin, Hall IR et al (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46(9):1753–1760

    Google Scholar 

  72. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. WHO (2011) Blood pressure. Available from: http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence/en/index.html. (cited 17 Jul 2011)

  74. Lawes CM, Vander Hoorn S, Rodgers A et al (2008) Global burden of blood-pressure-related disease, 2001. Lancet 371(9623):1513–1518

    Article  PubMed  Google Scholar 

  75. Whitworth JA, WHO, ISH Writing Group (2003) 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21(11):1983–1992

    Article  PubMed  Google Scholar 

  76. Chobanian AV, Bakris GL, Black HR et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42(6):1206–1252

    Article  CAS  PubMed  Google Scholar 

  77. Kannel WB, Castelli WP, Gordon T, McNamara PM (1971) Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med 74(1):1–12

    Article  CAS  PubMed  Google Scholar 

  78. Emerging Risk Factors Collaboration, Erqou S, Kaptoge S et al (2009) Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302(4):412–423

    Article  Google Scholar 

  79. Abramson JD, Rosenberg HG, Jewell N, Wright JM (2013) Should people at low risk of cardiovascular disease take a statin? BMJ 347:f6123

    Article  PubMed  Google Scholar 

  80. Danaei G, Lawes CM, Vander Hoorn S et al (2006) Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment. Lancet 368(9548):1651–1659

    Article  PubMed  Google Scholar 

  81. Gregg EW, Li Y, Wang J et al (2014) Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 370(16):1514–1523

    Article  CAS  PubMed  Google Scholar 

  82. Booth GL, Kapral MK, Fung K, Tu JV (2006) Recent trends in cardiovascular complications among men and women with and without diabetes. Diabetes Care 29(1):32–37

    Article  PubMed  Google Scholar 

  83. Stafoggia M, Cesaroni G, Peters A et al (2014) Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect. doi:10.1289/ehp.1307301

    PubMed Central  PubMed  Google Scholar 

  84. Fuks KB, Weinmayr G, Foraster M et al (2014) Arterial blood pressure and long-term exposure to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environ Health Perspect. doi:10.1289/ehp.1307725

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aghamohammadzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aghamohammadzadeh, R., Ormandy, D., Heagerty, A.M. (2015). Definition and Epidemiology of Arterial Disease. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics