Skip to main content

Cellular Zinc Signalling Is Triggered by CK2

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 12))

Abstract

Zinc is an essential trace element involved in various biological processes. Too much or too little cellular free zinc can cause detrimental effects and cell death. The intracellular level of zinc is controlled by three groups of proteins: ZnT transporters (SLC30A, zinc exporters), ZIP channels (SLC39A, zinc importers) and zinc-binding proteins such as metallothioneins. Zinc channel, ZIP7, a hub of zinc release from the stores, has long been associated with aggressiveness and development of anti-endocrine resistance in breast cancer. However, little is known about its regulatory mechanism. Recently, we have demonstrated that this ZIP channel is post-translationally triggered by CK2 phosphorylation on two cytoplasmic residues resulting in zinc release from the stores and activation of downstream effectors which lead to cancer growth. This CK2-triggered zinc release acts to inhibit multiple protein tyrosine phosphatases, resulting in direct stimulation of normal growth, migration and, in increased amounts, also cancer growth. Interestingly, another ZIP channel, ZIP6, with a known role in EMT and cancer metastasis is also predicted to be phosphorylated by CK2. ZIP channels are therefore new substrates of CK2 that may help explain CK2-related cancer phenotypes, including cell proliferation, cell migration and metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization and Food and Agriculture Organization of The United Nations (2002) Zinc. In: FAO/WHO expert consultation on human vitamin and mineral requirements. Rome, pp 257–270

    Google Scholar 

  2. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. doi:10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  3. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P (2007) Predicting zinc binding at the proteome level. BMC Bioinformatics 8:39. doi:10.1186/1471-2105-8-39

    Article  PubMed Central  PubMed  Google Scholar 

  4. Medicine FaNBoIo (2001) Zinc. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC, pp 442–501

    Google Scholar 

  5. Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105

    CAS  PubMed  Google Scholar 

  6. Falchuk KH, Montorzi M (2001) Zinc physiology and biochemistry in oocytes and embryos. Biometals 14(3–4):385–395

    Article  CAS  PubMed  Google Scholar 

  7. Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Rink L, Malavolta M (2006) Zinc homeostasis in aging: two elusive faces of the same “metal”. Rejuvenation Res 9(2):351–354. doi:10.1089/rej.2006.9.351

    Article  CAS  PubMed  Google Scholar 

  8. John E, Laskow TC, Buchser WJ, Pitt BR, Basse PH, Butterfield LH, Kalinski P, Lotze MT (2010) Zinc in innate and adaptive tumor immunity. J Transl Med 8(1):118. doi:10.1186/1479-5876-8-118

    Article  PubMed Central  PubMed  Google Scholar 

  9. Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53(9):1748–1759. doi:10.1016/j.freeradbiomed.2012.08.568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479(1–3):171–185

    Article  CAS  PubMed  Google Scholar 

  11. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177(4):637–645. doi:10.1083/jcb.200702081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yu M, Lee WW, Tomar D, Pryshchep S, Czesnikiewicz-Guzik M, Lamar DL, Li G, Singh K, Tian L, Weyand CM, Goronzy JJ (2011) Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med 208(4):775–785. doi:10.1084/jem.20100031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11. doi:10.1126/scisignal.2002585

    PubMed Central  PubMed  Google Scholar 

  14. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology 149(10):4912–4920. doi:10.1210/en.2008-0351

    Article  CAS  PubMed  Google Scholar 

  15. Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I (2009) Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 284(26):17677–17686. doi:10.1074/jbc.M109.007203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. doi:10.1146/annurev-nutr-033009-083312

    Article  PubMed  Google Scholar 

  17. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674. doi:10.1039/c1mt00011j

    Article  CAS  PubMed  Google Scholar 

  18. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2(5):306–317. doi:10.1039/b926662c

    Article  CAS  PubMed  Google Scholar 

  19. Taylor KM, Nicholson RI (2003) The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta 1611(1–2):16–30. doi:10.1016/S0005-2736(03)00048-8

    Article  CAS  PubMed  Google Scholar 

  20. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14(3–4):251–270

    Article  CAS  PubMed  Google Scholar 

  21. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–198

    Article  CAS  PubMed  Google Scholar 

  22. Taylor KM, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J 377(Pt 1):131–139. doi:10.1042/BJ20031183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280(15):15456–15463. doi:10.1074/jbc.M412188200

    Article  CAS  PubMed  Google Scholar 

  24. Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S, Miyai T, Nishida K, Yokoyama S, Hirano T (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 286(46):40255–40265. doi:10.1074/jbc.M111.256784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294(3):C726–C742. doi:10.1152/ajpcell.00541.2007

    Article  CAS  PubMed  Google Scholar 

  26. Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15(3):101–111. doi:10.1016/j.molmed.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  27. Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18(4):333–338. doi:10.1007/s10534-005-3707-9

    Article  CAS  PubMed  Google Scholar 

  28. Sankavaram K, Freake HC (2012) The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 23(6):629–634. doi:10.1016/j.jnutbio.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  29. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Kruger D, Grebnev G, Kuban M, Strumillo M, Uyar B, Budd A, Altenberg B, Seiler M, Chemes LB, Glavina J, Sanchez IE, Diella F, Gibson TJ (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42(Database issue):D259–D266. doi:10.1093/nar/gkt1047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kim JE, Tannenbaum SR, White FM (2005) Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J Proteome Res 4(4):1339–1346. doi:10.1021/pr050048h

    Article  CAS  PubMed  Google Scholar 

  32. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368. doi:10.1096/fj.02-0473rev

    Article  CAS  PubMed  Google Scholar 

  33. Pinna LA (1990) Casein kinase 2: an “eminence grise” in cellular regulation? Biochim Biophys Acta 1054(3):267–284

    Article  CAS  PubMed  Google Scholar 

  34. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295(1):102–106, S0006-291X(02)00636-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z (2009) Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 297(2):H569–H575. doi:10.1152/ajpheart.00293.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, Wang SP, Nesvizhskii AI, Chen YJ, Hong TM, Yang PC (2013) GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene. doi:10.1038/onc.2013.279

    Google Scholar 

  37. Taylor KM, Gee JMW, Kille P (2011) Zinc and cancer. In: Rink L (ed) Zinc in human health, vol 76. Ios Press, Amsterdam, pp 283–304. doi:10.3233/978-1-60750-816-8-283

    Google Scholar 

  38. Nimmanon T, Taylor K (2014) Zinc signalling and cancer. In: Fukada T, Kambe T (eds) Zinc signals in cellular functions and disorders. Springer, Tokyo, pp 285–313. doi:10.1007/978-4-431-55114-0_14

  39. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellis IO, Robertson JF, Nicholson RI (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13(7–8):396–406. doi:10.2119/2007-00040.Taylor

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731. doi:10.1007/s10549-009-0674-9

    Article  PubMed  Google Scholar 

  42. Hiscox S, Morgan L, Barrow D, Dutkowskil C, Wakeling A, Nicholson RI (2004) Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (“Iressa”, ZD1839). Clin Exp Metastasis 21(3):201–212

    Article  CAS  PubMed  Google Scholar 

  43. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16(2):573–582

    CAS  PubMed  Google Scholar 

  44. Taylor KM, Kille P, Hogstrand C (2012) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11(10):1863–1864. doi:10.4161/cc.20414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20(19):5320–5331. doi:10.1093/emboj/20.19.5320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Canton DA, Zhang C, Litchfield DW (2001) Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2beta. Biochem J 358(Pt 1):87–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Filhol O, Benitez MJ, Cochet C (2005) A zinc ribbon motif is essential for the formation of functional tetrameric protein kinase CK2. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function, Molecular biology intelligence unit. Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum, Georgetown, TX, pp 121–127. doi:10.1007/0-387-27421-9_18

  48. Pinna LA, Allende JE (2009) Protein kinase CK2 in health and disease: Protein kinase CK2: an ugly duckling in the kinome pond. Cell Mol Life Sci 66(11–12):1795–1799. doi:10.1007/s00018-009-9148-9

    Article  CAS  PubMed  Google Scholar 

  49. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12(1):260–271. doi:10.1021/pr300630k

    Article  CAS  PubMed  Google Scholar 

  50. Wu X, Tian L, Li J, Zhang Y, Han V, Li Y, Xu X, Li H, Chen X, Chen J, Jin W, Xie Y, Han J, Zhong CQ (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11(12):1640–1651. doi:10.1074/mcp.M112.019091

    Article  PubMed Central  PubMed  Google Scholar 

  51. Franz-Wachtel M, Eisler SA, Krug K, Wahl S, Carpy A, Nordheim A, Pfizenmaier K, Hausser A, Macek B (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11(5):160–170. doi:10.1074/mcp.M111.016014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11(8):215–229. doi:10.1074/mcp.O112.018366

    Article  PubMed Central  PubMed  Google Scholar 

  53. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189. doi:10.1016/j.cell.2010.12.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wu F, Wang P, Zhang J, Young LC, Lai R, Li L (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics 9(7):1616–1632. doi:10.1074/mcp. M000153-MCP201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9(6):3280–3289. doi:10.1021/pr1002214

    Article  CAS  PubMed  Google Scholar 

  56. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270. doi:10.1093/nar/gkr1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Horn H, Schoof EM, Kim J, Robin X, Miller ML, Diella F, Palma A, Cesareni G, Jensen LJ, Linding R (2014) KinomeXplorer: an integrated platform for kinome biology studies. Nat Methods 11(6):603–604. doi:10.1038/nmeth.2968

    Article  CAS  PubMed  Google Scholar 

  58. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250. doi:10.1186/gb-2007-8-11-r250

    Article  PubMed Central  PubMed  Google Scholar 

  59. Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429(6989):298–302. doi:10.1038/nature02545

    Article  CAS  PubMed  Google Scholar 

  60. Pakala SB, Rayala SK, Wang RA, Ohshiro K, Mudvari P, Reddy SD, Zheng Y, Pires R, Casimiro S, Pillai MR, Costa L, Kumar R (2013) MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res 73(12):3761–3770. doi:10.1158/0008-5472.CAN-12-3998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhang A, Wang Q, Han Z, Hu W, Xi L, Gao Q, Wang S, Zhou J, Xu G, Meng L, Chen G, Ma D (2013) Reduced expression of Snail decreases breast cancer cell motility by downregulating the expression and inhibiting the activity of RhoA GTPase. Oncol Lett 6(2):339–346. doi:10.3892/ol.2013.1385

    PubMed Central  PubMed  Google Scholar 

  62. Hogstrand C, Kille P, Ackland ML, Hiscox S, Taylor KM (2013) A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J 455(2):229–237. doi:10.1042/BJ20130483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784(1):33–47. doi:10.1016/j.bbapap.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  64. Solares AM, Santana A, Baladron I, Valenzuela C, Gonzalez CA, Diaz A, Castillo D, Ramos T, Gomez R, Alonso DF, Herrera L, Sigman H, Perea SE, Acevedo BE, Lopez-Saura P (2009) Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer 9:146. doi:10.1186/1471-2407-9-146

    Article  PubMed Central  PubMed  Google Scholar 

  65. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298. doi:10.1158/0008-5472.CAN-10-1893

    Article  CAS  PubMed  Google Scholar 

  66. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  67. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  68. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940. doi:10.1038/ncb1173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nimmanon, T., Taylor, K.M. (2015). Cellular Zinc Signalling Is Triggered by CK2. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_9

Download citation

Publish with us

Policies and ethics