Skip to main content

Structural Basis of CK2 Regulation by Autoinhibitory Oligomerization

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 12))

Abstract

The mechanism of regulation of CK2 differs from those common to other eukaryotic protein kinases and is not entirely established yet. Nowadays, several crystal structures of the tetrameric α2β2 holoenzyme are available, supporting a structural model of an autoinhibitory regulation by oligomerization proposed several years before on the basis of biochemical, biophysical and functional data. Monoclinic crystal forms of the holoenzyme reveal the symmetric architecture of the “free” isolated active tetramers. The dimension and the nature of the α/β interfaces configure the symmetric holoenzyme as a strong complex that does not spontaneously dissociate in solution, in accordance with the low dissociation constant (≈4 nM). Hexagonal crystal forms of the CK2 holoenzyme show an asymmetric arrangement of the two catalytic α-subunits around the obligate β2 regulatory subunits. These asymmetric α2β2 tetramers are organised in trimeric rings and filaments that correspond to the inactive forms of the enzyme, whereby the β-subunit plays an essential role in the formation of inactive polymeric assemblies. The derived structural model of (down)regulation by aggregation contributes to the interpretation of many available biochemical and functional data, although it awaits for a more comprehensive validation at the cellular level. These findings pave the way for the design of novel strategies aimed at the modulation of the CK2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Niefind K, Guerra B, Pinna LA et al (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J 17:2451–2462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chantalat L, Leroy D, Filhol O et al (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J 18:2930–2940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Boldyreff B, Meggio F, Pinna LA, Issinger OG (1993) Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits. Biochemistry 32:12672–12677

    Article  CAS  PubMed  Google Scholar 

  5. Niefind K, Issinger OG (2005) Primary and secondary interactions between CK2alpha and CK2beta lead to ring-like structures in the crystals of the CK2 holoenzyme. Mol Cell Biochem 274:3–14

    Article  CAS  PubMed  Google Scholar 

  6. Sarno S, Vaglio P, Marin O et al (1997) Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit. Eur J Biochem 248:290–295

    Article  CAS  PubMed  Google Scholar 

  7. Hathaway GM, Traugh JA (1984) Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition. J Biol Chem 259:7011–7015

    CAS  PubMed  Google Scholar 

  8. Mamrack MD (1989) Stimulation of enzymatic activity in filament preparations of casein kinase II by polylysine, melittin, and spermine. Mol Cell Biochem 85:147–157

    Article  CAS  PubMed  Google Scholar 

  9. Leroy D, Heriché JK, Filhol O et al (1997) Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem 272:20820–20827

    Article  CAS  PubMed  Google Scholar 

  10. Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem 198:25–30

    Article  CAS  PubMed  Google Scholar 

  11. Hathaway GM, Traugh JA (1979) Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Purification of casein kinases. J Biol Chem 254:762–768

    CAS  PubMed  Google Scholar 

  12. Glover CV (1986) A filamentous form of Drosophila casein kinase II. J Biol Chem 261:14349–14354

    CAS  PubMed  Google Scholar 

  13. Valero E, De Bonis S, Filhol O et al (1995) Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. J Biol Chem 270:8345–8352

    Article  CAS  PubMed  Google Scholar 

  14. Lolli G, Pinna LA, Battistutta R (2012) Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem Biol 7:1158–1163

    Article  CAS  PubMed  Google Scholar 

  15. Laudet B, Barette C, Dulery V et al (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408:363–373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Carugo O, Argos P (1997) Protein-protein crystal-packing contacts. Protein Sci 6:2261–2263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Theis-Febvre N, Martel V, Laudet B et al (2005) Highlighting protein kinase CK2 movement in living cells. Mol Cell Biochem 274:15–22

    Article  CAS  PubMed  Google Scholar 

  18. Gotz C, Kartarius S, Schetting S, Montenarh M (2005) Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol Cell Biochem 274:181–187

    Article  PubMed  Google Scholar 

  19. Kristensen LP, Larsen MR, Hojrup P et al (2004) Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site. FEBS Lett 569:217–223

    Article  CAS  PubMed  Google Scholar 

  20. French AC, Luscher B, Litchfield DW (2007) Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J Biol Chem 282:29667–29677

    Article  CAS  PubMed  Google Scholar 

  21. Litchfield DW, Lozeman FJ, Cicirelli MF et al (1991) Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266:20380–20389

    CAS  PubMed  Google Scholar 

  22. Pagano MA, Sarno S, Poletto G et al (2005) Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Mol Cell Biochem 274:23–29

    Article  CAS  PubMed  Google Scholar 

  23. Boldyreff B, Meggio F, Pinna LA, Issinger OG (1994) Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem 269:4827–4831

    CAS  PubMed  Google Scholar 

  24. Meggio F, Pinna LA (1984) Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. Eur J Biochem 145:593–599

    Article  CAS  PubMed  Google Scholar 

  25. Olsen BB, Boldyreff B, Niefind K, Issinger OG (2006) Purification and characterization of the CK2alpha′-based holoenzyme, an isozyme of CK2alpha: a comparative analysis. Protein Expr Purif 47:651–661

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21:3754–3764

    Article  CAS  PubMed  Google Scholar 

  27. Agostinis P, Goris J, Pinna LA, Merlevede W (1987) Regulation of casein kinase 2 by phosphorylation/dephosphorylation. Biochem J 248:785–789

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Lolli G, Ranchio A, Battistutta R (2014) Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture. ACS Chem Biol 9:366–371

    Article  CAS  PubMed  Google Scholar 

  29. Schnitzler A, Olsen BB, Issinger OG, Niefind K (2014) The protein kinase CK2(Andante) holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation. J Mol Biol 426:1871–1882

    Article  CAS  PubMed  Google Scholar 

  30. Poole A, Poore T, Bandhakavi S et al (2005) A global view of CK2 function and regulation. Mol Cell Biochem 274:163–170

    Article  CAS  PubMed  Google Scholar 

  31. Raaf J, Guerra B, Neundorf I et al (2013) First structure of protein kinase CK2 catalytic subunit with an effective CK2β-competitive ligand. ACS Chem Biol 8:901–907

    Article  CAS  PubMed  Google Scholar 

  32. Raaf J, Bischoff N, Klopffleisch K et al (2010) Interaction between CK2α and CK2β, the subunits of protein kinase CK2: thermodynamic contributions of key residues on the CK2α surface. Biochemistry 50:512–522

    Article  PubMed  Google Scholar 

  33. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  34. Dey S, Pal A, Chakrabarti P, Janin J (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160

    Article  CAS  PubMed  Google Scholar 

  35. Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Perkins JR, Diboun I, Dessailly BH et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233–1243

    Article  CAS  PubMed  Google Scholar 

  37. Nooren IM, Thornton JM (2003) Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 325:991–1018

    Article  CAS  PubMed  Google Scholar 

  38. Filhol O, Nueda A, Martel V et al (2003) Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 23:975–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Filhol O, Martiel JL, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. St-Denis NA, Derksen DR, Litchfield DW (2009) Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha. Mol Cell Biol 29:2068–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Baggio B, Pinna LA, Moret V, Siliprandi N (1970) A simple procedure for the purification of rat liver phosvitin kinase. Biochim Biophys Acta 212:515–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Italian Miur (PRIN 2008, R.B.), by FEBS (Distinguished Young Investigator Award, GL) and by the University of Padua (Progetto Giovani GRIC101044, GL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graziano Lolli or Roberto Battistutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lolli, G., Battistutta, R. (2015). Structural Basis of CK2 Regulation by Autoinhibitory Oligomerization. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_3

Download citation

Publish with us

Policies and ethics