Skip to main content

CIGB-300: A Promising Anti-Casein Kinase 2 (CK2) Peptide for Cancer Targeted Therapy

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Abstract

Over the past few years, the development of CK2 inhibitors using small molecules has emerged as a paradigmatic approach for blocking the enzymatic activity. However, despite successful experimental validation, so far only one of such chemical compounds has entered into clinical trials. Using a different rationale to inhibit CK2, we have developed CIGB-300 as a novel hypothesis-driven peptide targeting the CK2 phosphoacceptor domain instead of the ATP-binding site. Data from in vitro studies have revealed that at least in human cell lines from solid tumors, CIGB-300 binds mainly to and inhibits CK2-mediated phosphorylation of B23/npm. Studies of the molecular and cellular events downstream this interaction have demonstrated that CIGB-300 induces apoptosis in vitro and in vivo, modulating a wide array of proteins involved in cell proliferation, apoptosis, ribosome biogenesis, drug resistance, cell motility, and adhesion among other processes. Accordingly, CIGB-300 has shown synergistic interaction with anticancer drugs, suppressing angiogenesis and exhibiting antimetastatic properties. The pharmacology of this peptide-based drug has already been investigated in cancer patients. Different Phase 1 clinical trials have shown CIGB-300 to be safe and well tolerated and have studied its pharmacokinetics after either local or systemic administration. Remarkably, during a dose-finding Phase 2 trial in women with cervical cancer, cohorts receiving CIGB-300 and chemoradiotherapy concomitantly had a higher frequency of complete response than those receiving chemoradiotherapy alone. Taken together, the data presented here summarize all relevant preclinical and clinical findings that make CIGB-300 a promising peptide-based drug for the treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battistutta R, Sarno S, De Moliner E et al (2000) The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem 275:29618–29622

    Article  CAS  PubMed  Google Scholar 

  2. Li C, Liu X, Lin X, Chen X (2009) Structure-activity relationship of 7 flavonoids on recombinant human protein kinase CK2 holoenzyme. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34:20–26

    Article  PubMed  Google Scholar 

  3. Pagano MA, Meggio F, Ruzzene M et al (2004) 2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun 321:1040–1044

    Article  CAS  PubMed  Google Scholar 

  4. Sarno S, de Moliner E, Ruzzene M et al (2003) Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem J 374:639–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sarno S, Reddy H, Meggio F et al (2001) Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (′casein kinase-2′). FEBS Lett 496:44–48

    Article  CAS  PubMed  Google Scholar 

  6. Pierre F, Chua PC, O’Brien SE et al (2011) Discovery and SAR of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem 54:635–654

    Article  CAS  PubMed  Google Scholar 

  7. Pierre F, Chua PC, O’Brien SE et al (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356:37–43

    Article  CAS  PubMed  Google Scholar 

  8. Siddiqui-Jain A, Drygin D, Streiner N et al (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits pro- survival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70:10288–10298

    Article  CAS  PubMed  Google Scholar 

  9. Laudet B, Barette C, Dulery V et al (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408:363–373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Slaton JW, Unger GM, Sloper DT et al (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2:712–721

    CAS  PubMed  Google Scholar 

  11. Perea SE, Reyes O, Puchades Y et al (2004) Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the Casein Kinase 2 (CK2). Cancer Res 64:7127–7129

    Article  CAS  PubMed  Google Scholar 

  12. Perea SE, Baladron I, Garcia Y et al (2011) CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical Research. Mol Cell Biochem 356:45–50

    Article  CAS  PubMed  Google Scholar 

  13. Perera Y, Farina HG, Gil J et al (2009) Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity. Mol Cancer Ther 8:1189–1196

    Article  CAS  PubMed  Google Scholar 

  14. Piñol-Roma S (1999) Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis. Mol Biol Cell 10:77–90

    Article  PubMed Central  PubMed  Google Scholar 

  15. Perera Y, Costales HC, Díaz Y et al (2012) Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization. J Pept Sci 18:215–223

    Article  CAS  PubMed  Google Scholar 

  16. Meggio F, Pinna L (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  PubMed  Google Scholar 

  17. Martins LR, Lúcio P, Silva MG et al (2014) Targeting chronic lymphocytic leukemia using CIGB-300, a clinical-stage CK2-specific cell-permeable peptide inhibitor. Oncotarget 5:258–263

    PubMed Central  PubMed  Google Scholar 

  18. Perera Y, Farina HG, Hernández I et al (2008) Systemic administration of a peptide that impairs the Protein Kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int J Cancer 122:57–62

    Article  CAS  PubMed  Google Scholar 

  19. Louvet E, Junera HR, Le Panse S et al (2005) Dynamics and compartmentation of the nucleolar processing machinery. Exp Cell Res 304:457–470

    Article  CAS  PubMed  Google Scholar 

  20. Louvet E, Junéra HR, Berthuy I et al (2006) Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 17:2537–2546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Homma MK, Homma Y (2008) Cell cycle and activation of CK2. Mol Cell Biochem 316:49–55

    Article  CAS  PubMed  Google Scholar 

  22. Homma MK, Homma Y (2005) Regulatory role of CK2 during the progression of cell cycle. Mol Cell Biochem 247:47–52

    Article  Google Scholar 

  23. Yamane K, Kisella TJ (2005) Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res 11:2355–2363

    Article  CAS  PubMed  Google Scholar 

  24. Dixit D, Sharma V, Ghosh S et al (2012) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFa)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271. doi:10.1038/cddis.2012.10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2 · hSPT16 · SSRP1 complex. J Biol Chem 277:50206–50213

    Article  CAS  PubMed  Google Scholar 

  26. McKendrick L, Milne D, Meek D (1999) Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. Mol Cell Biochem 191:187–199

    Article  CAS  PubMed  Google Scholar 

  27. Quotti L, Gurrieri C, Brancalion A et al (2013) Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol 6:78, http://www.jhoonline.org/content/6/1/78

    Article  Google Scholar 

  28. Rodriguez-Ulloa A, Ramos Y, Gil J et al (2010) Proteomic profile regulated by the anticancer peptide CIGB-300 in non-small cell lung cancer (NSCLC) cells. J Proteome Res 9:5473–5483

    Article  CAS  PubMed  Google Scholar 

  29. Tawfic S, Olson MO, Ahmed KJ (1995) Role of protein phosphorylation in post-translational regulation of protein B23 during programmed cell death in the prostate gland. J Biol Chem 270:21009–21015

    Article  CAS  PubMed  Google Scholar 

  30. Farina HG, Benavent F, Perera Y et al (2011) CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo. Exp Cell Res 317:1677–1688

    Article  CAS  PubMed  Google Scholar 

  31. Langel U (2006) Handbook of cell-penetrating peptides. Taylor & Francis Group, Stockholm, Sweden, pp 29–43

    Book  Google Scholar 

  32. Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    Article  CAS  PubMed  Google Scholar 

  33. Tünnemann G, Martin RM, Haupt S et al (2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J 20:1775–1784

    Article  PubMed  Google Scholar 

  34. Benavent F, Perera Y, Alonso DF et al (2014) Mechanisms of cellular uptake, intracellular transportation, and degradation of CIGB-300, a Tat-conjugated peptide, in tumor cell lines. Mol Pharm 11:1798–1807

    Article  Google Scholar 

  35. Perera Y, Del Toro N, Gorovaya L (2014) Synergistic interactions of the anti‑casein kinase 2 CIGB‑300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models. Mol Clin Oncol 2(6):935–944

    PubMed Central  PubMed  Google Scholar 

  36. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  37. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Chen JC, Wang Q, Huang XH et al (2009) Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res 39:177–186

    Article  CAS  PubMed  Google Scholar 

  39. Huether A, Hopfner M, Sutter AP et al (2005) Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J Hepatol 43:661–669

    Article  CAS  PubMed  Google Scholar 

  40. Solares AM, Santana A, Baladrón I et al (2009) Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer 9(1):146

    Article  PubMed Central  PubMed  Google Scholar 

  41. Soriano-Garcia JL, Lopez-Diaz A, Solares-Asteasuainzarra M et al (2013) Pharmacological and safety evaluation of CIGB-300, a casein kinase 2 inhibitor peptide, administered intralesionally to patients with cervical cancer stage IB2/II. J Cancer Res Ther 1:163–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to C.I.G.B. and Biorec for supporting all of the work compiled in this review article. We also thank Alejandro Martin for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio E. Perea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perea, S.E. et al. (2015). CIGB-300: A Promising Anti-Casein Kinase 2 (CK2) Peptide for Cancer Targeted Therapy. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_16

Download citation

Publish with us

Policies and ethics