Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 887 Accesses

Abstract

This chapter starts with a description of quantum wells and quantum dots. Bandgap tuning using quantum wells is described. It is explained how quantum dots can be used to fabricate an intermediate band solar cell: a third generation concept that should allow the current of a solar cell to be increased without reducing its voltage. A description is given of the state of the art of solar cells containing quantum wells and of intermediate band solar cells made with quantum dots. Quantum well solar cells have been able to produce efficiencies similar to their bulk counterparts, but their tunable bandgaps make then attractive. Present intermediate band solar cells only demonstrate a small increase in generated photocurrent and their voltage is reduced, usually leading to cells that present efficiencies that are lower, or only marginally higher, than single gap counterparts. These issues are examined in this chapter and their origin is described. In all cases, the weak light absorption caused by the quantum structures is a main cause of unsatisfactory performance. This is the main topic of this book: the study of the light absorption by the nanostructures. The chapter ends with a description of the whole book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnham KWJ, Duggan G (1990) A new approach to high-efficiency multi-band-gap solar-cells. J Appl Phys 67(7):3490–3493

    Article  Google Scholar 

  2. Martí A, Cuadra L, Luque A (2000) Quantum dot intermediate band solar cell. In: Paper presented at the Proceedings of 28th IEEE photovoltaics specialists conference, New York

    Google Scholar 

  3. Luque A, Martí A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78(26):5014–5017

    Article  Google Scholar 

  4. Luque A, Martí A (2001) A metallic intermediate band high efficiency solar cell. Prog Photovoltaics: Res Appl 9(2):73–86

    Article  Google Scholar 

  5. Luque A, Marti A, Stanley C (2012) Understanding intermediate-band solar cells. Nat Photonics 6(3):146–152. doi:10.1038/nphoton.2012.1

    Article  Google Scholar 

  6. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  Google Scholar 

  7. Barnham K, Ballard I, Barnes J, Connolly J, Griffin P, Kluftinger B, Nelson J, Tsui E, Zachariou A (1997) Quantum well solar cells. Appl Surf Sci 113:722–733. doi:10.1016/S0169-4332(96)00876-8

  8. Sodabanlu H, Ma SJ, Watanabe K, Sugiyama M, Nakano Y (2013) Impact of strain accumulation on InGaAs/GaAsP multiple-quantum-well solar cells: direct correlation between in situ strain measurement and cell performances. Jpn J Appl Phys 51(10). doi:10.1143/Jjap.51.10nd16 (Artn 10nd16)

  9. Barnham KWJ, Ballard I, Connolly JG, Ekins-Daukes N, Kluftinger BG, Nelson J, Rohr C, Mazzer M (2000) Recent results on quantum well solar cells. J Mater Sci-Mater El 11(7):531–536. doi:10.1023/A:1026587616640

  10. Ekins-Daukes NJ, Barnham KWJ, Connolly JP, Roberts JS, Clark JC, Hill G, Mazzer M (1999) Strain-balanced GaAsP/InGaAs quantum well solar cells. Appl Phys Lett 75(26):4195–4197

    Article  Google Scholar 

  11. Lynch MC, Ballard IM, Bushnell DB, Connolly JP, Johnson DC, Tibbits TND, Barnham KWJ, Ekins-Daukes NJ, Roberts JS, Hill G, Airey R, Mazzer M (2005) Spectral response and I-V characteristics of large well number multi quantum well solar cells. J Mater Sci 40(6):1445–1449. doi:10.1007/s10853-005-0580-4

    Article  Google Scholar 

  12. Bushnell DB, Tibbits TND, Barnham KWJ, Connolly JP, Mazzer M, Ekins-Daukes NJ, Roberts JS, Hill G, Airey R (2005) Effect of well number on the performance of quantum-well solar cells. J Appl Phys 97(12). doi:10.1063/1.1946908 (Artn 124908)

  13. Aeberhard U (2010) Microscopic theory and numerical simulation of quantum well solar cells. Phys Simul Optoelectron Devices Xviii 7597. doi:10.1117/12.845478 (759702)

  14. Fujii H, Wang YP, Watanabe K, Sugiyama M, Nakano Y (2013) Compensation doping in InGaAs/GaAsP multiple quantum well solar cells for efficient carrier transport and improved cell performance. J Appl Phys 114(10). doi:10.1063/1.4820396 (Unsp 103101)

  15. Wen Y, Wang YP, Nakano Y (2012) Suppressed indium diffusion and enhanced absorption in InGaAs/GaAsP stepped quantum well solar cell. Appl Phys Lett 100(5). doi:10.1063/1.3681785 (Artn 053902)

  16. Sugiyama M, Wang YP, Fujii H, Sodabanlu H, Watanabe K, Nakano Y (2013) A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration. J Phys D Appl Phys 46(2). doi:10.1088/0022-3727/46/2/024001 (Artn 024001)

  17. Ekins-Daukes NJ, Lee KH, Hirst L, Chan A, Fuhrer M, Adams J, Browne B, Barnham KWJ, Stavrinou P, Connolly J, Roberts JS, Stevens B, Airey R, Kennedy K (2013) Controlling radiative loss in quantum well solar cells. J Phys D Appl Phys 46(26). doi:10.1088/0022-3727/46/26/264007 (Artn 264007)

  18. Jani O, Ferguson I, Honsberg C, Kurtz S (2007) Design and characterization of GaN/InGaN solar cells. Appl Phys Lett 91(13). doi:10.1063/1.2793180 (Artn 132117)

  19. Luque A, Martí A, Stanley C, López N, Cuadra L, Zhou D, Mc-Kee A (2004) General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence. J Appl Phys 96(1):903–909

    Article  Google Scholar 

  20. Marti A, Antolin E, Linares PG, Luque A (2012) Understanding experimental characterization of intermediate band solar cells. J Mater Chem 22(43):22832–22839. doi:10.1039/c2jm33757f

    Article  Google Scholar 

  21. Marti A, Lopez N, Antolin E, Canovas E, Luque A, Stanley CR, Farmer CD, Diaz P (2007) Emitter degradation in quantum dot intermediate band solar cells. Appl Phys Lett 90:233510–233513

    Article  Google Scholar 

  22. Hubbard SM, Cress CD, Bailey CG, Raffaelle RP, Bailey SG, Wilt DM (2008) Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl Phys Lett 92(12):123512 (Artn 123512)

    Google Scholar 

  23. Bailey CG, Forbes DV, Polly SJ, Bittner ZS, Dai Y, Mackos C, Raffaelle RP, Hubbard SM (2012) Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE J Photovoltaics. doi:10.1109/JPHOTOV.2012.2189047

  24. Blokhin SA, Sakharov AV, Nadtochy AM, Pauysov AS, Maximov MV, Ledentsov NN, Kovsh AR, Mikhrin SS, Lantratov VM, Mintairov SA, Kaluzhniy NA, Shvarts MZ (2009) AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. Semiconductors 43(4):514–518

    Article  Google Scholar 

  25. Linares PG, Marti A, Antolin E, Farmer CD, Ramiro I, Stanley CR, Luque A (2012) Voltage recovery in intermediate band solar cells. Sol Energy Mater Sol Cells 98:240–244. doi:10.1016/j.solmat.2011.11.015

    Article  Google Scholar 

  26. Luque A, Linares PG, Antolín E, Ramiro I, Farmer CD, Hernández E, Tobías I, Stanley CR, Martí A (2012) Understanding the operation of quantum dot intermediate band solar cells. J Appl Phys 111:044502. doi:10.1063/1.3684968

    Article  Google Scholar 

  27. Marti A, Antolin E, Stanley CR, Farmer CD, Lopez N, Diaz P, Canovas E, Linares PG, Luque A (2006) Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Phys Rev Lett 97(24):247701–247704

    Article  Google Scholar 

  28. Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero LJ, Cuadra L, Balenzategui JL (2005) Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Appl Phys Lett 87(8):083503–083505

    Google Scholar 

  29. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luque .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Luque, A., Mellor, A.V. (2015). Introduction. In: Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14538-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14538-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14537-2

  • Online ISBN: 978-3-319-14538-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics