Skip to main content

Code Biology

  • Chapter
  • First Online:
Code Biology

Abstract

Today there are two major paradigms in biology. One is the Modern Synthesis, the framework that has unified the ideas of Darwin and Mendel and has put them on the firm mathematical basis provided by the equations of population genetics. The Modern Synthesis was proposed in the 1930s by Ronald Fischer (1930), Sewall Wright (1931), J.B.S. Haldane (1932), Theodosius Dobzhansky (1937) and others, and then extended, in the 1940s, by Julian Huxley (1942), Ernst Mayr (1942), George Gaylord Simpson (1944), Bernhard Rensch (1947) and others. New extensions have recently been advocated by various authors, in particular by George Williams (1966), Stephen Jay Gould (2002), Gerd Müller (2007), Sean Carroll (2008) and Massimo Pigliucci (2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artmann S (2009) Basic semiosis as code-based control. Biosemiotics 2(1):31–38

    Article  Google Scholar 

  • Barbieri M (1985) The semantic theory of evolution. Harwood Academic Publishers, London/New York

    Google Scholar 

  • Barbieri M (2003) The organic codes: an introduction to semantic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Barbieri M (2012) Codepoiesis – the deep logic of life. Biosemiotics 5(3):297–299

    Article  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Fischer RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Longmans Green, London

    Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior. J Theor Biol 7:1–32

    Article  CAS  PubMed  Google Scholar 

  • Huxley J (1942) Evolution: the modern synthesis. Allen and Unwin, London

    Google Scholar 

  • Linde Medina M (2010) Two “EvoDevos”. Biol Theory 5(1):7–11

    Article  Google Scholar 

  • Maturana HR, Varela FJ (1980) Autopoiesis and cognition: the realisation of the living. D. Reidel Publishing Company, Dordrecht

    Book  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mesarovic MD (1968) Systems theory and biology. Springer, Berlin

    Book  Google Scholar 

  • Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8(12):943–949

    Article  PubMed  Google Scholar 

  • Peirce CS (1906) The basis of pragmaticism. In: Hartshorne C, Weiss P (eds) The collected papers of Charles Sanders Peirce, vols I-VI (1931–1935). Harvard University Press, Cambridge, MA

    Google Scholar 

  • Pigliucci M (2009) An extended synthesis for evolutionary biology: the year in evolutionary biology 2009. Ann N Y Acad Sci 1168:218–228

    Article  PubMed  Google Scholar 

  • Pigliucci M, Müller GB (eds) (2010) Evolution – the extended synthesis. MIT Press, Cambridge, MA

    Google Scholar 

  • Popper K (1972) Objective knowledge. Clarendon Press, Oxford

    Google Scholar 

  • Popper K (1979) Three worlds. Mich Q Rev 18(1):1–23. Reprint of The Tanner Lecture on Human Values delivered by Karl Popper at The University of Michigan on April 7, 1978

    Google Scholar 

  • Rensch B (1947) Evolution above the species level. Columbia University Press, New York

    Google Scholar 

  • Rosen R (1958) A relational theory of biological systems. Bull Math Biophys 20:245–260

    Article  Google Scholar 

  • Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A, Raubitschek A, Ziegler S, LeProust EM, Akey JM, Stamatoyannopoulos JA (2013) Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342:1367–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Bertalanffy L (1969) General system theory. George Braziller, New York

    Google Scholar 

  • von Neumann J (1951) The general and logical theory of automata. In: Taub (1961), chap. 9, pp 288–328. Delivered at the Hixon Symposium, September 1948; first published 1951 as pages 1–41 in Jeffress A (ed) Cerebral mechanisms in behavior. Wiley, New York

    Google Scholar 

  • von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 43–98

    Google Scholar 

  • von Neumann J (1966) The theory of self-reproducing automata. Edited and completed by Burks A, University of Illinois Press, Urbana

    Google Scholar 

  • Wheatheritt RJ, Babu MM (2013) The hidden codes that shape protein evolution. Science 342:1325–1326

    Article  Google Scholar 

  • Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. Hermann, Paris

    Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmeyer J (1996) Signs of meaning in the universe. Indiana University Press, Bloomington

    Google Scholar 

  • Hofmeyr J-H S (2007) The biochemical factory that autonomously fabricates itself: a systems-biological view of the living cell. In: Boogard F, Bruggeman F, Hofmeyr J, Westerhoff H (eds) Towards a philosophy of systems biology: Chapter 10. Elsevier, pp 217–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbieri, M. (2015). Code Biology. In: Code Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-14535-8_10

Download citation

Publish with us

Policies and ethics