Skip to main content

Arsenic in Soil: Availability and Interactions with Soil Microorganisms

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Arsenic (As) is a naturally occurring element in the Earth’s crust, commonly found as a trace constituent of rocks, soils, sediments, water, and biota. However natural and anthropogenic processes can increase its content in groundwater, soils, and sediments to toxic levels. Concentration of total As in soils does not necessarily represent its biological availability or potential toxicity measures which are much more important for assessing possible environmental impacts. Soil microorganisms may be involved in As pollution issues in an active and passive way at the same time. They can induce environmental As bioavailability due to chemical–biochemical processes, microbial mediated, that favor its release in water-soluble forms or more mobile (As III). Conversely, soil microbial biomass can be deeply affected in its size, functions, and diversity by the concentration of this ion in soil solution and impact in this way soil functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substance and Disease Registry (2007) Toxicological profile for arsenic. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, GA, p 193

    Google Scholar 

  • Ajmone-Marsan F, Biasioli M, Kralj T, Grčman H, Davidson CM, Hursthouse AS, Madrid L, Rodrigues S (2008) Metals in particle-size fractions of the soils of five European cities. Environ Pollut 152(1):73–81, http://dx.doi.org/10.1016/j.envpol.2007.05.020

    Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47(3–4):335–379. doi:10.1007/BF00279331

    Article  Google Scholar 

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190

    Article  CAS  PubMed  Google Scholar 

  • Bello D, Trasar-Cepeda C, Gil-Sotres F (2014) Enzymes and environmental contaminants significant to agricultural sciences in enzymes in agricultural sciences. OMICS Group International, Foster City, CA

    Google Scholar 

  • Bhattacharyya P, Tripathy S, Chakrabarti K, Chakraborty A, Banik P (2008) Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere 72(4):543–550, http://dx.doi.org/10.1016/j.chemosphere.2008.03.035

    Article  CAS  PubMed  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic, a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8(6):753–768. doi:10.2217/fmb.13.38

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cai Y, Liu G, Solo-Gabriele H, Snyder GH, Cisar JL (2008) Role of soil-derived dissolved substances in arsenic transport and transformation in laboratory experiments. Sci Tot Environ 406:180–189

    Article  CAS  Google Scholar 

  • Cheng H, Hu Y, Luo J, Xu B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26

    Article  CAS  PubMed  Google Scholar 

  • Cubadda F, Ciardullo S, D’Amato M, Raggi A, Aureli F, Carcea M (2010) Arsenic contamination of the environment-food chain: a survey on wheat as a test plant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet. J Agric Food Chem 58(18):10176–10183

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764. doi:10.1021/cr00094a002

    Article  CAS  Google Scholar 

  • Das S, Jean J-S, Kar S, Chakraborty S (2013) Effect of arsenic contamination on bacterial and fungal biomass and enzyme activities in tropical arsenic-contaminated soils. Biol Fertil Soils 49(6):757–765. doi:10.1007/s00374-012-0769-z

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33(9):1143–1153, http://dx.doi.org/10.1016/S0038-0717(01)00018-9

    Article  CAS  Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, NY, pp 121–156

    Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  CAS  PubMed  Google Scholar 

  • dos Santos JV, de Melo Rangel W, Azarias Guimarães A, Duque Jaramillo P, Rufini M, Marra L, Varón López M, Pereira da Silva M, Fonsêca Sousa Soares C, de Souza Moreira F (2013) Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 22(10):1526–1537. doi:10.1007/s10646-013-1139-9

    Article  PubMed  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Singleton I (2003) Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotoxicol Environ Saf 55(3):344–351, http://dx.doi.org/10.1016/S0147-6513(02)00092-1

    Article  CAS  PubMed  Google Scholar 

  • European Environment Agency (EEA) (2007) Progress in management of contaminated sites (CSI 015). European Environment Agency, Copenhagen

    Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9(2):125–132, http://dx.doi.org/10.1016/S0969-2126(01)00566-4

    Article  CAS  PubMed  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390. doi:10.1126/science.1112665

    Article  CAS  PubMed  Google Scholar 

  • Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P (2011) Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. J Hazard Mater 185(2–3):1241–1248, http://dx.doi.org/10.1016/j.jhazmat.2010.10.037

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Bhattacharyya P, Pal R (2004) Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environ Int 30(4):491–499, http://dx.doi.org/10.1016/j.envint.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41(10):2031–2037, http://dx.doi.org/10.1016/j.soilbio.2009.04.026

    Article  CAS  Google Scholar 

  • Henke K (2009) Arsenic: environmental chemistry, health threats and waste treatment. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Huang J (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225:1548

    Google Scholar 

  • Huq SMI, Joardar JC, Parvin S, Correll R, Naidu R (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24:305–316

    PubMed Central  PubMed  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312. doi:10.1016/S0043-1354(00)00182-2

    Article  CAS  Google Scholar 

  • Kruger M, Bertin P, Heipieper H, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841. doi:10.1007/s00253-013-4838-5

    Article  CAS  PubMed  Google Scholar 

  • Lett MC, Muller D, Lievremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194(2):207–208. doi:10.1128/JB.06391-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38(6):1430–1437, http://dx.doi.org/10.1016/j.soilbio.2005.10.020

    Article  CAS  Google Scholar 

  • Lyubun YV, Pleshakova EV, Mkandawire M, Turkovskaya OV (2013) Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions. J Hazard Mater 262:685–690, http://dx.doi.org/10.1016/j.jhazmat.2013.09.045

    Article  CAS  PubMed  Google Scholar 

  • Madrid F, Biasioli M, Ajmone-Marsan F (2008) Availability and bioaccessibility of metals in fine particles of some urban soils. Arch Environ Contam Toxicol 55(1):21–32. doi:10.1007/s00244-007-9086-1

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Jadoon W, Husain S (2010) Metal contamination of surface soils of industrial city Sialkot, Pakistan: a multivariate and GIS approach. Environ Geochem Health 32(3):179–191. doi:10.1007/s10653-009-9274-1

    Article  CAS  PubMed  Google Scholar 

  • Maliszewska W, Dec S, Wierzbicka H, Woźniakowska A (1985) The influence of various heavy metal compounds on the development and activity of soil micro-organisms. Environ Pollut Ser A Ecol Biol 37(3):195–215, http://dx.doi.org/10.1016/0143-1471(85)90041-8

    Article  CAS  Google Scholar 

  • Marabottini R, Stazi SR, Papp R, Grego S, Moscatelli MC (2013) Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol Environ Saf 96:147–153, http://dx.doi.org/10.1016/j.ecoenv.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Violante V, Barberis E (2007) Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water. J Environ Sci Health 42:1775–1783

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents - a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Mishra D, Rout M, Chaudhry GR (2007) Adsorption kinetics of natural dissolved organic matter and its impact on arsenic(V) leachability from arsenic-loaded ferrihydrite and Al-ferrihydrite. J Environ Sci Health 42:81–88

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Nordgren A, Baath E, Soderstorn B (1988) Evaluation of soil respiration characteristics to assess heavy metal effect on soil microorganism using glutamic acid as a substrate. Soil Biol Biochem 20:949–954

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944. doi:10.1126/science.1081903

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49. doi:10.1016/j.tim.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Kim KH, Saha SK, Swaraz AM, Paul DK (2014) Review of remediation techniques for arsenic (As) contamination: A novel approach utilizing bio-organisms. J Environ Manage 134:175–185. doi:10.1016/j.jenvman.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  • Silver S, Phung LT, Rosen BP (2002) Arsenic metabolism: resistance, reduction, and oxidation. In: Jr WTF (ed) Environmental chemistry of arsenic. Marcel Dekker, Inc., New York, NY, pp 247–272

    Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74(9):2924–2927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568, http://dx.doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    CAS  Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1999) Simple kinetic approach to determine the toxicity of AS[V] to soil biological properties. Soil Biol Biochem 31(5):705–713, http://dx.doi.org/10.1016/S0038-0717(98)00169-2

    Article  CAS  Google Scholar 

  • Tabatabai MA (1977) Effects of trace elements on urease activity in soils. Soil Biol Biochem 9(1):9–13, http://dx.doi.org/10.1016/0038-0717(77)90054-2

    Article  CAS  Google Scholar 

  • Tripathy S, Bhattacharyya P, Mohapatra R, Som A, Chowdhury D (2014) Influence of different fractions of heavy metals on microbial ecophysiological indicators and enzyme activities in century old municipal solid waste amended soil. Ecol Eng 70:25–34, http://dx.doi.org/10.1016/j.ecoleng.2014.04.013

    Article  Google Scholar 

  • Vaughan DJ (2006) Arsenic. Elements 2(2):71–75. doi:10.2113/gselements.2.2.71

    Article  CAS  Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66(6):1788–1796

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2013) Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Euras Soil Sci 46(7):793–801, ISSN 1064-2293, Pleiades Publishing, Ltd

    Article  CAS  Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJ, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311(1–3):19–33. doi:10.1016/S0048-9697(03)00096-2

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214

    Article  CAS  PubMed  Google Scholar 

  • Wu MM, Kuo TL, Hwang YH, Chen CJ (1989) Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol 130(6):1123–1132

    CAS  PubMed  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Pu L, Peng B, Gao Z (2011) The impact of urban land expansion on soil quality in rapidly urbanizing regions in China: Kunshan as a case study. Environ Geochem Health 33(2):125–135. doi:10.1007/s10653-010-9326-6

    Article  CAS  PubMed  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31(6):707–715. doi:10.1007/s10653-009-9248-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Rita Stazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stazi, S.R., Marabottini, R., Papp, R., Moscatelli, M.C. (2015). Arsenic in Soil: Availability and Interactions with Soil Microorganisms. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_6

Download citation

Publish with us

Policies and ethics