Skip to main content

Remediation of Toxic Metal-Contaminated Soil Using EDTA Soil Washing

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Soil washing with chelating agents permanently removes toxic metals from contaminated soils by forming water-soluble complexes. EDTA-based method where chelant and process waters are recycled in a closed loop with no wastewater generated aims at sustainable remediation and reclamation of contaminated soils. For Pb-contaminated Meža Valley in Slovenia, geostatistical simulation showed that it has potential to reduce the area with Pb above critical regulatory threshold limit by 91 %. In small-scale laboratory trials, earthworms and simulated abiotic environmental factors changed the availability and mobility of metals still remaining in the washed soil after remediation. No such shifts were measured in remediated soil exposed to agricultural practice in field conditions. Remediation reduced toxic metal concentration in roots, green parts and fruits in most of the tested plants; uptake of Pb in edible parts was reduced below the concentration stipulated for foodstuffs by European Union legislature. However, the remediation process to some extent deteriorates soil properties and functioning as a plant and microbial substrate. In addition, micronutrients were removed from soil along toxic metals due to the non-selective nature of EDTA chelation. Revitalisation of remediated soil by providing missing structure, nutrients and microbial activity partly restored plant growth and soil functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager P, Marshall WD (2001) The removal of metals and release of EDTA from pulp wash water. J Wood Sci Technol 21:413–425

    CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry, 1st edn. Academic, London

    Google Scholar 

  • Almaroai YA, Usman AR, Ahmad M, Kim KR, Vithanage M, Ok YS (2013) Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environ Technol 34:747–755

    CAS  PubMed  Google Scholar 

  • Baker LR, White PM, Pierzynski GM (2011) Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Appl Soil Ecol 48:1–10

    Google Scholar 

  • Barona A, Aranguiz I, Elias A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean up procedures. Environ Pollut 113:79–85

    CAS  PubMed  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  • Bohlen PJ (2002) Earthworms. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 370–373

    Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    CAS  Google Scholar 

  • Brown GA, Elliot HA (1991) Influence of electrolytes on EDTA extraction of Pb from contaminated soil. Water Air Soil Pollut 62:157–165

    Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28

    CAS  PubMed  Google Scholar 

  • Clark H, Hausladen DM, Brabander DJ (2008) Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design. Environ Res 107:312–319

    CAS  PubMed  Google Scholar 

  • COM (2006) 232 Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil

    Google Scholar 

  • Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soil using earthworms and chemical extractions. J Environ Qual 30:1231–1237

    CAS  PubMed  Google Scholar 

  • Council Directive (1999) 1999/31/EC relating to the landfill of waste

    Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiol 50:463–477

    Google Scholar 

  • Cushnie GC (2009) Pollution prevention and control technologies for plating operation, 2nd edn. National Center for Manufacturing Sciences, Ann Arbor

    Google Scholar 

  • Dao L, Morrison L, Kiely G, Zhang C (2013) Spatial distribution of potentially bioavailable metals in surface soils of a contaminated sports ground in Galway, Ireland. Environ Geochem Health 35:227–238

    CAS  PubMed  Google Scholar 

  • Davis S, Mirick DK (2006) Soil ingestion in children and adults in the same family. J Expo Sci Environ Epidemiol 16:63–75

    CAS  PubMed  Google Scholar 

  • Demir A, Koleli N (2013) The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils. Environ Technol 34:799–805

    CAS  PubMed  Google Scholar 

  • Dexter AR (2004) Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201–214

    Google Scholar 

  • Di Palma L, Ferrantelli P, Merli C, Biancifiori F (2003) Recovery of EDTA and metal precipitation from soil washing solutions. J Hazard Mater 103:153–168

    PubMed  Google Scholar 

  • Duggan MJ, Inskip MJ (1985) Childhood exposure to lead in surface dust and soil: a community health problem. Public Health Rev 13:1–54

    CAS  PubMed  Google Scholar 

  • EC (2011) More research needed into contaminated soil and water treatment. Science for Environment Policy. European Commission DG Environment News Alert Service, Brussels

    Google Scholar 

  • EEA (2007) State of the environment No 1 chapter 2. Office for official publications of the European communities, Brussels

    Google Scholar 

  • EEA (2010) The European environment. State and outlook 2010, soil thematic assessment. European Environment Agency, Copenhagen

    Google Scholar 

  • El-Hady OA, El-Dewiny CY (2006) The conditioning effect of composts (natural) or/and acrylamide hydrogels (synthesized) on a sandy calcareous soil 1. Growth response, nutrients uptake and water and fertilizers use efficiency by tomato plants. J Appl Sci Res 2:890–898

    Google Scholar 

  • Elzinga EJ, Sparks DL (2002) X-ray absorption spectroscopy study of the effects of pH and ionic strength on Pb(II) sorption to amorphous silica. Environ Sci Technol 36:4352–4357

    CAS  PubMed  Google Scholar 

  • Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401:21–28

    CAS  PubMed  Google Scholar 

  • ESBNEC (2005) Soil Atlas of Europe. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Finster ME, Gray KA, Binns H (2004) Lead levels of edibles grown in contaminated residential soils: a field survey. Sci Toltal Environ 320:245–257

    CAS  Google Scholar 

  • Finzgar N, Lestan D (2007) Multi-step leaching of Pb and Zn contaminated soils with EDTA. Chemosphere 66:824–832

    CAS  PubMed  Google Scholar 

  • Finzgar N, Lestan D (2008) The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution. Chemosphere 73:1484–1491

    CAS  PubMed  Google Scholar 

  • Finzgar N, Tlustos P, Lestan D (2007) Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant Soil Environ 53:225–238

    CAS  Google Scholar 

  • Finzgar N, Jez E, Voglar D, Lestan D (2014) Spatial distribution of metal contamination before and after remediation in the Meža Valley, Slovenia. Geoderma 217–218:135–143

    Google Scholar 

  • Fitter AH, Moyersoen B (1996) Evolutionary trends in root-microbe symbioses. Philos Trans R Soc 351:1367–1375

    Google Scholar 

  • Gianfreda L, Rao MA, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279

    CAS  PubMed  Google Scholar 

  • Gibbons S, Mourato S, Resende G (2011) The amenity value of English nature: a hedonic price approach. London School of Economics and Political Sciences, London

    Google Scholar 

  • Glorennec P, Declercq C (2007) Performance of several decision support tools for determining the need for systematic screening of childhood lead poisoning around industrial sites. Eur J Public Health 17:47–52

    PubMed  Google Scholar 

  • Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    CAS  Google Scholar 

  • Hamlin R (2006) Molybdenum. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor and Francis, Boca Raton, pp 375–394

    Google Scholar 

  • Han FX, Banin A, Kingery WL, Triplett GB, Zhou LX, Zheng SJ, Ding WX (2003) New approach to studies of heavy metal redistribution in soil. Adv Environ Res 8:113–120

    CAS  Google Scholar 

  • Heikens A, Pejinenburg WJGM, Hendriks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113:385–393

    CAS  PubMed  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioen 57:196–204

    CAS  Google Scholar 

  • Jelusic M, Lestan D (2014) Effect of EDTA washing of metal polluted garden soils. Part I: toxicity hazards and impact on soil properties. Sci Total Environ 475:132–141

    CAS  PubMed  Google Scholar 

  • Jelusic M, Grcman H, Vodnik D, Suhadolc M, Lestan D (2013) Functioning of metal contaminated garden soil after remediation. Environ Pollut 174:63–70

    CAS  PubMed  Google Scholar 

  • Jelusic M, Vodnik D, Macek I, Lestan D (2014) Effect of EDTA washing of metal polluted garden soils. Part II: can remediated soil be used as a plant substrate? Sci Total Environ 475:142–152

    CAS  PubMed  Google Scholar 

  • Jelusic M, Vodnik D, Lestan D (2014) Revitalization of EDTA-remediated soil by fertilization and soil amendments. Ecol Eng 73:429–438

    Google Scholar 

  • Juang RS, Wang SW (2000) Electrolytic recovery of binary metals and EDTA from strong complexed solutions. Water Res 34:3179–3185

    CAS  Google Scholar 

  • Kalia K, Flora SJS (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21

    CAS  PubMed  Google Scholar 

  • Karim MA, Khan LI (2012) Enhancement of electrokinetic decontamination with EDTA. Environ Technol 33:2291–2298

    CAS  PubMed  Google Scholar 

  • Kemper WD, Rosenau RC (1986) Aggregate stability and size distribution. In: Klute A (ed) Methods of soil analysis. Part 1, physical and mineralogical methods. American Society for Agronomy Inc, Madison, pp 425–442

    Google Scholar 

  • Kim C, Lee Y, Ong SK (2003) Factors effecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51:845–853

    CAS  PubMed  Google Scholar 

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis. Part 1, physical and mineralogical methods. American Society for Agronomy Inc, Madison, pp 687–734

    Google Scholar 

  • Kos B, Grcman H, Lestan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil 253:403–411

    CAS  Google Scholar 

  • Laidlaw MAS, Zahran S, Mielke HW, Taylor MP, Filippelli GM (2012) Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburgh, USA. Atmos Environ 49:302–310

    CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    CAS  Google Scholar 

  • Langdon CJ, Piearce TG, Meharg AA, Semple KT (2001) Survival and behavior of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biol Biochem 33:1239–1244

    CAS  Google Scholar 

  • Lanigan RS, Yamarik TA (2002) Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA, and trisodium HEDTA. Int J Toxicol 21:95–142

    CAS  PubMed  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    CAS  PubMed  Google Scholar 

  • Lei M, Liao BH, Zeng QR, Khan S (2008) Fraction distributions of lead, cadmium, copper, and zinc in metal-contaminated soil before and after extraction with disodium ethylenediaminetetraacetic acid. Comm Soil Sci Plant Anal 39:1963–1978

    CAS  Google Scholar 

  • Lestan D, Udovic M (2011) Mobility and availability of toxic metals after soil washing with chelating agents. In: Khan MS (ed) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 343–364

    Google Scholar 

  • Lestan D, Grcman H, Zupan M, Bacac N (2003) Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantago lanceolata. Soil Sed Contam 12:507–522

    CAS  Google Scholar 

  • Lestan D, Hanc A, Finzgar N (2005) Influence of ozonation on extractability of Pb and Zn from contaminated soils. Chemosphere 61:1012–1019

    CAS  PubMed  Google Scholar 

  • Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 15:13–33

    Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53

    CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Macek I, Šibanc N, Kavšček M, Lestan D (2014) Biodiversity of arbuscular mycorrhizal fungi in metal polluted and remediated garden soils before and after soil revitalisation with commercial and indigenous fungal inoculum. 33rd new phytologist symposium, Zurich, p 49

    Google Scholar 

  • Manouchehri N, Besancon S, Bermond A (2006) Major and trace metal extraction from soil by EDTA: equilibrium and kinetic studies. Anal Chim Acta 559:105–112

    CAS  Google Scholar 

  • Martell AE, Smith RM (2003) NIST critically selected stability constants of metal complexes Version 7.0. U.S. Department of Commerce, Gaithersburg

    Google Scholar 

  • Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytorem 6:95–109

    CAS  Google Scholar 

  • Mijangos I, Perez R, Albizu I, Garbisu C (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microb Technol 40:100–106

    CAS  Google Scholar 

  • Montanarella L, Vargas R (2012) Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Terr Syst Environ Sustain 4:559–564

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Narjary B, Aggarwal P, Singh A, Chakraborty D, Singh R (2012) Water availability in different soils in relation to hydrogel application. Geoderma 187–188:94–101

    Google Scholar 

  • EC No 1881 (2006) Setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L 364/5

    Google Scholar 

  • Nonhebel S, Kastner T (2011) Changing demand for food, livestock feed and biofuels in the past and in the near future. Livest Sci 139:3–10

    Google Scholar 

  • Noren K, Loring JS, Bargar JR, Persson P (2009) Adsorption mechanisms of EDTA at the water–iron oxide interface, implications for dissolution. J Phys Chem C 113:7762–7771

    CAS  Google Scholar 

  • Nowack B, Sigg L (1996) Adsorption of EDTA and metal-EDTA complexes onto goethite. J Colloid Interface Sci 177:106–121

    CAS  PubMed  Google Scholar 

  • Nowack B, Schulin R, Robinsos BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    CAS  PubMed  Google Scholar 

  • Odendaal JP, Reinecke AJ (2004) Evidence of metal interaction in the bioaccumulation of cadmium and zinc in Porcellio laevis (Isopoda) after exposure to individual and mixed metals. Water Air Soil Pollut 156:1–4

    Google Scholar 

  • Ozturk L, Karanlik S, Ozkutlu F, Cakmak I, Kochian LV (2003) Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil. Plant Sci 164:1095–1101

    CAS  Google Scholar 

  • Pearl M, Pruijn M, Bovendeur J (2006) The application of soil washing to the remediation of contaminated soils. Land Contam Reclamat 14:713–726

    Google Scholar 

  • Pociecha M, Lestan D (2010) Electrochemical EDTA recycling with sacrificial Al anode for remediation of Pb contaminated soil. Environ Pollut 158:2710–2715

    CAS  PubMed  Google Scholar 

  • Pociecha M, Lestan D (2012a) Novel EDTA and process water recycling method after soil washing of multi-metal contaminated soil. J Hazard Mater 201–202:273–279

    PubMed  Google Scholar 

  • Pociecha M, Lestan D (2012b) Washing of metal contaminated soil with EDTA and process water recycling. J Hazard Mater 235–236:384–387

    PubMed  Google Scholar 

  • Pociecha M, Lestan D (2012c) Recycling of EDTA solution after soil washing of Pb, Zn, Cd and As contaminated soil. Chemosphere 86:843–846

    CAS  PubMed  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    CAS  Google Scholar 

  • Rieuwerts JS, Thornton ME, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavail 10:61–75

    CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    CAS  PubMed  Google Scholar 

  • Salaskar D, Shrivastava M, Kale SP (2011) Bioremediation potential of spinach (Spinacia oleracea L.) for decontamination of cadmium in soil. Curr Sci 101:1359–1363

    CAS  Google Scholar 

  • Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2012) How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 165:124–132

    PubMed  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and bioavailability in soil? – a review. Environ Pollut 157:1981–1989

    CAS  PubMed  Google Scholar 

  • Sousa A, Pereira R, Antunes SC, Cachada A, Pereira E, Duarte AC, Gonçalves F (2008) Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol Environ Saf 71:661–670

    CAS  PubMed  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428

    CAS  PubMed  Google Scholar 

  • Tei F, Benincasa P, Farneselli M, Caprai M (2010) Allotment gardens for senior citizens in Italy: current status and technical proposals. Acta Hortic 881:91–96

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    CAS  Google Scholar 

  • Tsang DCW, Zhang WH, Lo IMC (2007) Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of contaminated soils. Chemosphere 68:234–243

    CAS  PubMed  Google Scholar 

  • Tsonev T, Jose F, Lidon C (2012) Zinc in plants – an overview. Plant Sci 24:322–333

    Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305:267–280

    CAS  Google Scholar 

  • Udovic M, Lestan D (2007) The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ Pollut 148:663–668

    CAS  PubMed  Google Scholar 

  • Udovic M, Lestan D (2009) Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74:1367–1373

    CAS  PubMed  Google Scholar 

  • Udovic M, Lestan D (2010a) Eisenia fetida avoidance behaviour as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ Pollut 158:2766–2772

    CAS  PubMed  Google Scholar 

  • Udovic M, Lestan D (2010b) Fractionation and bioavailability of Cu in soil remediated by EDTA leaching and processed by earthworms (Lumbricus terrestris L.). Environ Sci Pollut Res 17:561–570

    CAS  Google Scholar 

  • Udovic M, Lestan D (2012) EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact. Chemosphere 88:718–724

    CAS  PubMed  Google Scholar 

  • Udovic M, Plavc Z, Lestan D (2007) The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 70:126–134

    CAS  PubMed  Google Scholar 

  • Udovic M, Drobne D, Lestan D (2009) Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 157:2822–2829

    CAS  PubMed  Google Scholar 

  • US EPA (1995) Test methods for evaluation of solid waste, vol IA. Laboratory Manual Physical/Chemical Methods, SW 86, 40 CFR Parts 403 and 503. US Government Printing Office, Washington, DC

    Google Scholar 

  • US EPA (2004) Cleaning up the nation’s waste sites: markets and technology trends, 46th edn. US Government Printing Office, Washington, DC

    Google Scholar 

  • Vangronsveld J, Assche FV, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    CAS  PubMed  Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voglar D, Lestan D (2013) Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling. Chemosphere 91:76–82

    CAS  PubMed  Google Scholar 

  • Voglar D, Lestan D (2014) Chelant soil-washing technology for metal-contaminated soil. Environ Technol 35:1389–1400

    CAS  PubMed  Google Scholar 

  • Vulava VM, Seaman JC (2000) Mobilization of lead from highly weathered porous material by extracting agents. Environ Sci Technol 34:4828–4834

    CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36:4804–4810

    CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK (2010) Dissecting pathways involved in manganese homeostasis and stress in higher plant cells. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin, Heidelberg, pp 95–118

    Google Scholar 

  • Wong CSC, Li X (2006) Thornton I. Urban environmental geochemistry of trace metals, review. Environ Pollut 142:1–16

    CAS  PubMed  Google Scholar 

  • Wragg J, Cave M, Basta N, Brandon E, Casteel S, Denys S, Gron C, Oomen A, Reimer K, Tack K, Van de Wiele T (2011) An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci Total Environ 409:4016–4030

    CAS  PubMed  Google Scholar 

  • Wu C, Zhang L (2010) Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environ Earth Sci 60:45–56

    CAS  Google Scholar 

  • Yamaguchi Y, Yamanaka Y, Miyamoto M, Fujishima A, Honda K (2003) Hybrid electrochemical treatment for persistent metal complexes at conductive diamond electrodes and clarification of its reaction route. J Electrochem Soc 153:1123–1132

    Google Scholar 

  • Zeng GR, Sauve S, Allen HE, Hendershot WH (2005) Recycling EDTA solutions used to remediate metal-polluted soils. Environ Pollut 133:225–231

    CAS  PubMed  Google Scholar 

  • Zhang FP, Li CF, Tong LG, Yue LX, Li P, Ciren YJ, Cao CG (2010a) Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Appl Soil Ecol 45:144–151

    Google Scholar 

  • Zhang W, Huang H, Tan F, Wang H, Qui R (2010b) Influence of EDTA washing on the species and mobility of heavy metals residual in soil. J Hazard Mater 173:369–376

    CAS  PubMed  Google Scholar 

  • Zupanc V, Kastelec D, Lestan D, Grcman H (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ Pollut 186:56–62

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domen Lestan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lestan, D. (2015). Remediation of Toxic Metal-Contaminated Soil Using EDTA Soil Washing. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_21

Download citation

Publish with us

Policies and ethics